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Preface 

It is now more than five years since the Belgian block cipher Rijndael 
was chosen as the Advanced Encryption Standard {AES). Joan Daemen 
and Vincent Rijmcn used algebraic techniques to provide an unparalleled 
level of assurance against many standard statistical cryptanalytic tech
niques. The cipher is a fitting tribute to their distinctive approach to 
cipher design. Since the publication of the AES, however, the very same 
algebraic structures have been the subject of increasing cryptanalytic 
attention and this monograph has been written to summarise current 
research. We hope that this work will be of interest to both cryptogra
phers and algebraists and will stimulate future research. 

During the writing of this monograph we have found reasons to thank 
many people. We are especially grateful to the British Engineering and 
Physical Sciences Research Council (EPSRC) for their funding of the 
research project Security Analysis of the Advanced Encryption System 
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and Ludovic Perret for their valuable comments. Finally, the support 
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Chapter 1 

INTRODUCTION TO THE AES 

In January 1997, the U.S. National Institute of Standards and Teeh-
nology (NIST) announced the impending development of an Advanced 
Encryption Standard (AES). The intention was that it would: 

. .. specify an unclassified, publicly disclosed encryption algorithm capable of 
protecting sensitive government information well into the next century [94]. 

To achieve this goal NIST established an open competition. Fifteen 
block ciphers from around the world were submitted as candidates, with 
the initial field being narrowed to a set of five in the first round. From 
these five candidates the block cipher Rijndacl [37], designed by Belgian 
cryptographers Joan Daemen and Vincent Rijmen, was chosen as the 
AES. The AES was finally published as the Federal Information Pro
cessing Standard FIPS 197 [95] in November 2001. 

1. Background 
The AES is a block cipher and therefore encrypts and decrypts blocks 

of data according to a secret key. The AES is intended to replace the 
Data Encryption Standard (DES) [92], and gradually to replace Triple-
DES [96]. The DES and Triple DES have been remarkably successful 
block ciphers and have been used in millions of systems around the 
world. Even after thirty years of analysis, the most practical attack 
remains exhaustive key search. However, the restricted key and block 
size of the DES, along with its relatively poor performance in software, 
make a replacement inevitable. 

The AES has a very different structure to the DES. Whilst the DES 
is said to bo a Feistel cipher [50], the AES is said to bo a substitution 
permutation {sP-)network [113]. Both the AES and the DES are iterated 
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ciphers, which means that a certain sequence of computations, consti
tuting a round, is repeated a specified number of times. The operations 
used within the AES are byte-oriented and the cipher offers good per
formance in hardware, limited byte-oriented processors, and modern 32-
bit and 64-bit machines. By contrast, the operations used in the DES 
are fundamentally bit operations. As a consequence the DES offers out
standing performance in hardware but offers generally poor performance 
in most software environments, 

The AES and the DES arc closely related in terms of their underlying 
design philosophies. Both rely heavily on the ideas of Shannon [113] 
and the concepts of diffusion and confusion. Whilst most block ciphers 
follow these principles, few do so as clearly as the AES and the DES. The 
aim of diffusion is to spread the influence of all parts of the inputs to a 
block cipher, namely the plaintext and the key, to all parts of the output, 
the ciphertext. Diffusion is provided in both the AES and DES by the 
use of permutations. The aim of confusion is to make the relationship 
between plaintext, ciphertext, and key complicated. In both the AES 
and DES, confusion is provided by very carefully chosen substitution or 
S-boxes. These make local substitutions of small sub-blocks of data and 
these local changes arc then spread by the diffusion transformations. 

From the start of the AES selection process there was a significant 
level of support for Rijndael. Whilst Rijndael had a relatively unfamiliar 
design, there had been two immediate predecessors. The block cipher 
SHARK was proposed in 1996 [108] and featured all the components later 
used in Rijndael. Some changes to SHARK would lead a year later to 
the block cipher SQUARE [36]. The proposal for SQUARE also includes a 
discussion of the square attack for this type of block cipher. 

The initial popular support for Rijndael increased in the second round 
of the AES selection process. The significance of the design strategy 
for Rijndael was clear on two counts. Firstly, the transparent design 
permitted quick and accurate security estimates to be made for Rijndael 
against standard attacks. Secondly, the byte-wise design helped give 
Rijndael a versatile performance characteristic. Rijndael was generally 
perceived to be a worthy selection as the AES. As a brief review of the 
state of the AES five years after its selection concludes: 

... there have been few cryptanalytic advances despite the efforts of many 
researchers. The most promising new approach to AES cryptanalysis remains 
speculative, wiiile the most effective attack against versions of the AES with 
fewer rounds is older than the AES itself [42]. 

This "new approach" is algebraic in nature and is the subject of this 
monograph. 
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2. Algebraic Perspectives 
With hindsight it is a httic surprising that the algebraic properties 

of Rijndael were not discussed more during the AES selection process. 
Many observers noted that the structured design of Rijndael might have 
interesting side-effects, most obviously the ongoing development of ded
icated attacks such as the square [51] and bottleneck [55] attacks. Hovi'-
ever, the algebraic foundations of Rijndael were not explored in detail. 

An early pubhc comment about Rijndael with such an algebraic per
spective [88] appeared towards the end of tiie AES selection process. 
Other research around this time [52, 67, 111] made similar points. The 
transparent structure of the AES and its strong algebraic foundations 
give an interesting framework for analysis. In particular, there are many 
alternative representations of part or all of the cipher. Some repre
sentations provide interesting insights into the interaction of different 
operations. Others provide implementation benefits, either in terms of 
security with regards to side-channel cryptanalysis or in terms of per
formance improvements. However, some representations, such as those 
that have sought to represent the process of AES encryption as a system 
of equations, may point tire way to future breakthroughs. 

Whilst little research was undertaken about the algebraic properties 
of Rijndael during the AES selection process itself, there has been much 
research since. One intriguing recent development has been the interplay 
between the cryptanalysis of symmetric ciphers and that of asymmetric 
ciphers. Due to the fundamental reliance of asymmetric cryptography 
on computational algebra and number theory, asymmetric cryptanalysis 
inevitably focuses on the manipulation of algebraic structures. However, 
this is a very new area for symmetric cryptanalysis, where recognising 
statistical pat terns of bits has traditionally been the most effective form 
of cryptanalysis. In fact, the overlap between symmetric and asymmetric 
cryptanalysis is very specific. Several asymmetric cryptosystems have 
been proposed that depend for their security on the difficulty of solving 
a large system of multivariate equations of low degree. Similarly, the 
process of AES encryption can also be expressed in this way. Thus 
the difficulty of solving such a multivariate equation system is directly 
related to the security of the AES. 

3. Overview of the Monograph 
The purpose of this monograph is to provide both an overview and 

more background to the algebraic analysis of the AES. In Chapter 2 we 
give the required mathematical foundations, A description of the AES 
follows in Chapter 3 along with a description of small scale variants 



4 ALGEBRAIC ASPECTS OF THE AES 

to encourage practical experimentation. Chapter 4 considers structural 
aspects of the AES and the use of different representations. Chapters 5 
and 6 consider how we might represent an AES encryption as a system 
of equations and the possible methods of solution for such systems. 

Although we provide a full bibliography, the sources below are partic
ularly helpful. A thorough overview of mathematical cryptology is given 
in [80]. Unsurprisingly, the most complete background to the evolution 
and theoretical underpinnings of the AES comes from the designers [35, 
37, 107], most particularly in the book The Design of Rijndael [39]. 
Other surveys of the AES are available. An enjoyable series of articles 
surveying both the DES and the AES is given in [69-71], and a brief 
overview of the first five years of the AES is provided by [42]. The 
ECRYPT European Network of Excellence gives a comprehensive review 
of the AES in The State of the Art of AES Cryptanalysis [43], whilst the 
AES LOUNGE [44] is an online repository of information about the AES 
covering many non-algebraic aspects of cryptanalysis of the AES as well 
as its implementation. The AES is formally described in FIPS 197 [95]. 



Chapter 2 

M A T H E M A T I C A L B A C K G R O U N D 

This chapter presents the important mathematical definitions and 
concepts required in this monograph. They arc presented in a logical 
order, with each definition building on earlier concepts. However, the 
broad goals of the analysis presented in this monograph should be rea
sonably clear with only a passing acquaintance of the mathematics in 
this chapter. For more background and context to this mathematical 
material, we recommend the following references [23, 33, 57-59, 74, 97]. 

1. Groups, Rings, and Fields 
Groups, rings, and fields constitute the basic structures of abstract 

algebra. They arc also the basic algebraic structures required for the 
definition and the algebraic analysis of the AES. 

G r o u p s 

D E F I N I T I O N 2.1 Let G be a non-empty set with a binary operation 
o: G X G —» G. We say that (G, o) is a group if the following conditions 
hold. 

• The operation o is associative, that is [gi o 52) ° ga = 91° (52 ° 93) for 
all 51)52,93 e G. 

• There exists an clement e £ G such that e o g = g o e = g ior all 
g ^ G. This element e is unique and is called the identity element. 

• For every g e G, there exists a unique clement g~^ E G such that 
g o g~^ = g~^ o g = e. This clement g~^ is called the inverse of g. 

The order of a group (G, o) is the cardinality of the set G and is often 
denoted by |G|. If the order of (G, o) is finite, we say that G is a finite 
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group. Similarly, wc say that an clement g & G has finite order if there 
exists a positive integer m such that g o ... o g = g"^ = e. In this case, 
the least such integer m is called the order of g and is denoted by o(g), 
and so the inverse element For a finite group G, the order 
of any element divides the order of the group G. 

D E F I N I T I O N 2.2 The group (G, o) is said to be an abelian or commuta
tive group ii g o g' = g' Q g for all g, g' G G. 

The group operation o is usually clear from the context. When this is 
the case, the symbol o is omitted and the group (G, o) denoted by G. 

E X A M P L E 2.3 The set of integers Z under the operation of addition 
forms an abelian group. Similarly, if n is a positive integer, the set of 
integers Z„ = { 0 , . . . , n — 1} under the operation of addition modulo n 
forms an abelian group of order n. D 

E X A M P L E 2.4 The set of integers Z* = { l , . . . , p - 1 } under the opera
tion of multiplication modulo p forms an abelian group if p is prime. D 

E X A M P L E 2.5 Suppose that G\ and G2 are groups, then G = Gi x G2 
is a group witii operation defined as {gi, 52) ° {g'lT 02) = (si^ii 5252)• The 
group G is known as the direct product of Gi and G2. D 

A non-empty subset if C G is called a subgroup of G if if is itself a 
group under the same operation. For a finite group, Lagrange's Theorem 
states that the order of any subgroup divides the order of the group. A 
subgroup if of G is called a normal subgroup of G \i g^^hg G H for 
all 5 e G and h e H. The notation H < G and if O G is used to 
denote that if is a subgroup of G and that H is a normal subgroup of G 
respectively. A group that has no non trivial normal subgroups is called 
a simple group. 

If if is a subgroup of G, then the right coset of H in G defined by 
g e G is the set Hg = {hg\h e H}. The set of right cosets, {Hg\g G G} , 
forms a partition of the elements of G. We can also define left cosets of 
i f in G in a similar manner. The set of right cosets of if in G and the 
set of left cosets of if in G have the same cardinality. This cardinality 
is known as the index of if in G and is denoted by [G : H]. Ii H is 
a normal subgroup of G, then the right coset and left coset defined by 
any g £ G are identical, and Hg = gH is simply called the coset of if 
in G defined hy g e G. In this case, the set of all cosets of H in G 
forms a group with binary operation {Hg, Hg') 1-̂  Hgg' for all g,g' e G. 
This group is called the quotient group of G hy LI. This group has order 
[G : H] and is denoted by G/H. 
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D E F I N I T I O N 2.6 Let S' be a non-empty subset of G. Then the group 
generated by S is defined as the set of all finite products of form gio.. .ogf., 
where either gi £ S or g^ & S. 

The group generated by S is denoted by (5) and is the smallest subgroup 
of G which contains S. If 5 = {<?}, then the group (S) — (g) generated 
by a single element g £ G is called the cyclic group generated by g. li g 
has finite order, then {g) = {g,g^,... ,g"^^',e}. 

A permutation of a non empty set A:' is a bijective mapping X ~^ X. 
The set of permutations of X^ under the operation of composition, forms 
a group known as the symmetric group of X. We denote this group by 
Sx- If X is finite with cardinality n, this group is also known as the 
symmetric group on n elements and is denoted by Sn- The order of the 
group S„ is n!. An element of the group 5„ that permutes two elements 
of X and leaves the remaining elements fixed is called a transposition. An 
clement 5 G 5„ is said to be an even permutation if it can be expressed as 
a product of an even number of transpositions, otherwise g is said to be 
an odd permutation. The subset of Sn consisting of all even permutations 
is a normal subgroup of 5„, known as the alternating group on n elements 
and is denoted by An- For n > 1, the order of An is | n ! . Furthermore, 
An is a simple group for n ^ 4. 

D E F I N I T I O N 2.7 Let X he a non empty set and G a group. A group 
action of G on A" is a mapping G x X ^ X, denoted by {g, x) y^ g • x, 
such that the following two conditions hold. 

• If e is the identity of G, then e • a; = a; for every x £ X; 

• 9 ' {9'' ^) ~ {99') • ^ for all g,g' G G and for all a; e A*. 

If there is a group action of a group G on a set X, we say that the 
group G acts on the set X. An example of a group action is the action 
of the symmetric group Sx on the set X defined by (5, x) 1-̂  g{x) for all 
permutations g of Sx and x £ X. 

If G is a group acting on the set Af, then the orhit of a; G A" is defined 
to be {5 • a; j 3 e G} C X. The orbits of X form a partition of X. The 
stabilizer of an element x £ X is defined to be Gx = { 3 6 G\g • x = x] 
and is a subgroup of G. The number of elements in the orbit oi x & X 
is the index [G ; Gx]- Furthermore, if Fix{g) denotes the number of 
elements of X that are fixed by <; € G, then the number of orbits of G 
on X is 

— Y^Fixig). 



8 ALGEBRAIC ASPECTS OF THE AES 

If the action of G on X has only one orbit, then for any pair of elements 
x,x' G X there exists g ^ G such that g • x = x'. In this case the 
action oi G on X is said to be transitive. Furthermore, if for any pair of 
m-tuples {xi,..., a;„i), {x\,..., a;̂ „) £ Af™ with distinct entries {xi ^ Xj 
and x[ ^ x'j) there exists g & G such that g • Xi = x'^, then the action is 
said to be m-transitive. The action is said to be sharply m-transitive if 
such an element <; £ G is unique. 

If G acts on a set X, then y C X is called a block of G if for every 
g £ G, we have either g{y) = ^ or g{y) n 3̂  = 0. The group G is said to 
be primitive if it has no non trivial blocks, and imprimitive otherwise. 

E X A M P L E 2.8 The symmetric group Sn acting on a set of n elements 
is a primitive and sharply n-transitive group. The alternating group An 
acting on a set of n elements is a primitive and sharply (n —2)-transitive 
(n > 2) group. D 

D E F I N I T I O N 2.9 Let (G, o) and {H, •) be groups. A mapping (p-.G -^ H 
is a (group) homomorphisrn if, for all g, g' £ G, 

</'(ff°9') = 0 ( s ) -0 (5 ' ) -

An injcctivo homomorphisrn is called a monomorphisrn and a surjec-
tive homomorphisrn is called an epimorphism. A bijective homomor-
phism 0; G -̂> if is called an isomorphism, and the groups G and H are 
said to be isomorphic, denoted hy G = H. An isomorphism from G to 
itself is called an automorphism of G. 

D E F I N I T I O N 2.10 If 0: G ^ if is a homomorphism and en is the iden
tity element of H, then the subset 

kci 4> = {g e G\(j>ig) = en} 

of G is called the kernel of the homomorphism (p. 

We note that ker </> is a normal subgroup of G and the First Isomor
phism Theorem states that the quotient group G/ ker (j) is isomorphic to 
the image of cj). Furthermore, any normal subgroup i i < G is the kernel 
of the "natural" epimorphism G —> G/H defined hy g i-^ Hg. 

E X A M P L E 2.11 Let H be the group ( { - 1 , 1 } , x ) , where x denotes the 
usual operation of integer multiplication. There exists a homomorphism 
from the symmetric group Sn onto H that maps every even permutation 
to 1 and every odd permutation to —1. The kernel of this homomorphism 
consists of all even permutations and so is the alternating group An-
Thus the quotient group Sn/An is isomorphic to i i . D 
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Isomorphic groups have identical algebraic structure and can be re
garded as essentially the same algebraic object. Isomorphisms are often 
useful for solving problems that would otherwise be intractable. Thus 
obtaining alternative representations using isomorphisms is a common 
technique for the study and analysis of algebraic structures. We note 
however that constructing isomorphisms between two algebraic struc
tures, and even constructing the inverse isomorphism of a known iso
morphism, can often be a very difficult problem. 

E X A M P L E 2.12 Let p be a prime number, and Zp_i and Z* denote the 
groups defined in Examples 2.3 and 2.4 respectively. The group Zp_i is 
generated additively by the element 1 € '^p-i, and the group Z* is gen
erated multiplicatively by some g € Z*. These groups are isomorphic, 
and an isomorphism between them can be defined by m H^ g™, that is 
the exponentiation in Z* The inverse isomorphism is known as the dis
crete logarithm, and the calculation of the discrete logarithm is generally 
beheved to be a hard problem. The difficulty of computing this inverse 
isomorphism is the foundation of the security of many asymmetric cryp-
tosystems, for example the Digital Signature Standard [93]. D 

R i n g s 

D E F I N I T I O N 2.13 Let i? be a non-empty set with two associative binary 
operations +,•: R x R —^ R. Wc say that {R, +, •) is a ring {with unit) 
if the following conditions hold. 

• {R, +) is an abelian group. 

• The operation • is distributive over -t-, that is for all r,r',r" £ R, 

r • {r' + r") = r • r' + r • r" and (r' + r") • r — r' • r + r" • r. 

• There is an element I £ R such that 1 • r = r • 1 = r for all r £ /?. 

The identity element of the group (i?, -|-) is usually denoted by 0 and is 
called the zero of the ring {R, -I-, •). The element 1 is called the identity 
element of the ring (i?, + , •). 

D E F I N I T I O N 2.14 The ring (i?, -I-, •) is a commutative ring if r - r ' = r'-r 
for all r, r' G R, tha t is the operation • is commutative. 

All rings considered in this monograph are commutative rings with 
unit. As with groups, we often assume that the operations + and • are 
clear, and we denote the ring {R, +, •) simply by R. We also often denote 
r • r' simply by rr' for r, r ' £ R. 
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A commutative ring R is called an integral domain if it contains no 
zero- divisors, that is rr' ^ 0 for all r,r' £ R\ {0}. A nonzero clement 
r of a ring R is said to be invertible (or a unit) if there exists r~^ G i? 
such that r • r~^ = r~^ • r = 1. The set of all invertible elements of R 
is denoted by R* and forms a group under multiplication known as the 
group of units of R. If all nonzero elements of a ring R are invertible, 
then R is called a division ring and R* = R\{0}. 

E X A M P L E 2.15 The set of integers Z under the operations of integer 
addition and multiplication forms a commutative ring. Similarly, the 
set of integers Z„ = { 0 , . . . , n — 1} under the operations of addition and 
multiplication modulo n forms a commutative ring. We note that Z„ is 
a division ring if and only if n is prime. D 

D E F I N I T I O N 2.16 Let {R,+, •) be a ring and / a non empty subset of 
R. We say that / is an ideal of R, denoted by I < R, if the following 
conditions hold. 

• (/, + ) is a subgroup of {R, + ) . 

• For all X € / and r & R, x • r & I and r • x & I. 

The coset of an ideal / in R defined by r 6 i? is denoted by / + r and 
defined to be the set {s + r | s £ / } . The cosets of an ideal I <\ R form 
a partit ion of the ring R. The set of all cosets of / forms a ring with 
addition and multiplication defined by (/ + r) + (/ + r ') = I + {r + r') 
and (/ + r ) ( / + r ') = I + rr' respectively. This ring is denoted by R/I 
and is called the quotient ring or the residue class ring modulo I. 

If 5 is a non-empty subset of R, then the ideal generated by S is 
denoted by (5) and consists of all finite sums of the form X^r^Si, where 
ri e R and Si £ S. An ideal is said to be a principal ideal if it can be 
generated by one element r Q R. An integral domain in which every 
ideal is a principal ideal is called a principal ideal domain. 

D E F I N I T I O N 2.17 If R and R' are rings, then 0; i? -^ R' is a, (ring) 
homomorphism if the following conditions hold. 

• (l>{r + r') = (i){r) + 0(r ' ) for all r, r ' 6 R. 

u (j){r • r) = (f){r) • <j){r') for all r, r ' £ R. 

Different types of ring homomorphism arc defined in a similar manner 
to group homomorphisms. The kernel ker 0 = {r £ R\<t){r) = 0} of a ring 
homomorphism (f>: R —^ R' is an ideal of R. Furthermore, the quotient 
ring R/ ker cji is isomorphic to the image of R, and every ideal I <] R is, 
the kernel of the "natural" epimorphism R -^ R/I defined by r I-H- J + r. 
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Fie lds 

D E F I N I T I O N 2.18 A commutative division ring F is called a field. 

Thus a field F is a ring (F, + , •) such that both (F, + ) and ( F \ {0}, •) are 
commutative groups. 

E X A M P L E 2.19 The sets Q of rational numbers, K of real numbers, and 
C of complex numbers form fields under the usual operations of addition 
and multiplication. D 

E X A M P L E 2.20 The set Z„ = { 0 , . . . n - 1} under addition and multi
plication modulo an integer n is a field if and only if n is prime (Exam
ples 2.3 and 2.4). D 

If F is a field, we say that F has positive characteristic if there exists 
a positive integer m such that the m-fold sum 1 -I- . . . -|- 1 = 0. In this 
case, the least such integer m is called the characteristic of F. If there 
is no such m, we say that F has characteristic zero. The infinite fields 
Q, R, and C all have characteristic zero, whilst the finite field Zj, has 
characteristic p. In fact, all finite fields have characteristic p for some 
prime p. We discuss further aspects of finite fields in Section 2.4. 

2. Polynomial Rings 
Polynomial rings are a special example of commutative ring that play 

an important role in the theory of finite fields. The algebraic analysis of 
the AES makes extensive use of polynomial rings. 

Univar ia te po lynomia l rings 

A monomial in the single variable or indeterminate x is the formal ex
pression x* for some i G N, that is some non- negative power of x. The 
degree of the monomial x* is i. 

D E F I N I T I O N 2.21 A univariate polynomial in the variable x over a field 
F is a finite linear combination over F of monomials in x, tha t is a formal 
expression of the form 

Cdx'^ + Cd-ix'^~^ -f- . . . + C2x'^ + c\x + Co, 

where d is a non-negative integer and Q , . . . , CQ G F , with c^ 7̂  0 if 
d>Q. 

D E F I N I T I O N 2.22 The set of all univariate polynomials in the variable x 
over a field F forms a ring under the standard operations of polynomial 
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addition and multiplication. This ring is a principal ideal domain called 
the univariate polynomial ring over F and is denoted by ¥[x]. 

Let f{x) e F[a;] be a univariate polynomial. The degree of f{x) is the 
maximum integer d such that Q ^ 0, and is denoted by deg(/(a;)). If 

f{x) = CdX'^ + . . . + ClX + Co, 

then the summands Cjx' (q 7̂  0) are called the terms of f{x), and Cj is 
called the coefficient of the monomial x\ Furthermore, we can define 
the leading monomial, leading coefficient, and leading term of f{x) as 
x'^, Cd and Cdx'^ respectively. A polynomial f{x) is a monic polynomial 
if its leading coefficient is 1. 

The evaluation of the polynomial f(x) at a £ F is defined as the 
element '^i-QCid^ G F and is denoted by / ( a ) . We say that a is a root 
of f{x) if / ( a ) = 0. A polynomial of degree d has at most d roots in F. 

T H E O R E M 2.23 Univariate Division Algorithm. Given f{x) and g{x) 6 
¥[x], then there exists q(x),r{x) e F[x] with deg(r(a;)) < deg{g{x)) such 
that f(x) = q{x)g{x) -\-r{x). The univariate polynomial r{x) is known 
as the remainder of the division of f{x) by <;(a;). 

The well-known Euclidean algorithm to find the greatest common divisor 
of two polynomials is just the repeated application of Theorem 2.23. 

E X A M P L E 2.24 Suppose that 

f{x) = a;*̂  + a;̂  + x^ + a;̂  + X + 1 and g{x) = a;* + x^ + 1 

are polynomials in the imivariate polynomial ring 1J2[X\. We then have 

x*̂  + a;̂  + a:̂  + a;̂  + a; + 1 = a;̂ (a;'* + x^ + 1) + (a;̂  + a; + 1), 

so f{x) = q{x)f{x) + r{x), where q{x) = x"^ and r{x) = a;̂  + a; + 1. D 

A polynomial f{x) G ¥[x] of positive degree is said to be irreducible in 
¥[x] if there is no factorisation of the form f{x) = p{x)q{x), where p{x) 
and q{x) are polynomials of positive degree in F[a;]. Every polynomial 
in F[x] can be written as the product of monic irreducible polynomials 
and some constant in F, and this product is unique up to the order of 
the factors. 

E X A M P L E 2.25 Let f{x) be a polynomial in F[x] of degree d, and {fix)) 

be the ideal generated by f{x). The elements of the quotient ring • ' -

can be written as polynomials 

ttd-ix'^ ^ + ... + ayx + ao 
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in F[x] of degree less than d. In this representation of the quotient ring, 
addition is simply polynomial addition. However, multiplication in the 
quotient ring is defined by applying Theorem 2.23. For two polynomials 
gi{x),g2{x) S ¥[x], we know that there exists q{x),r{x) E F[a;] such that 

9i{x)g2{x) = q{x)f{x) + r{x), 

where deg{r{x)) < deg{f{x)) = d. In this representation of the quotient 

ring TTray, the product of .gi(a;) and g2{x) is r{x). D 

E X A M P L E 2.26 Lot f{x) = x^ + x'^ + 1 be a polynomial in the univariate 
polynomial ring Z2[x]. The product of the polynomials (a;'* + x^ + x'^ + 1) 
and (x* + x^ + X + 1) satisfies 

{x'''+ x^ + x'^ + l){x'^ + x^ + X + 1) = x^+ x'^+ x^+ x'^+ X + 1 
= {x-^+ x^+ x + l)f{x) + 0. 

Thus in the quotient ring R = 7-37^, the product of these two nonzero 
elements is 0, and R is not an integral domain. D 

T H E O R E M 2.27 The quotient ring -TjMy is a field if and only if f{x) is 

irreducible in F[a;]. 

The Lagrange Interpolation Formula is a well-known method for con
structing a polynomial based on given values for evaluation of a function. 

T H E O R E M 2.28 Lagrange Interpolation Formula. Given n + 1 pairs 
{ai,bi) G F X F, with ai 7̂  Oj, there exists a unique polynomial f{x) £ 
¥[x] of degree at most n with / ( a ; ) = 6j. This polynomial is given by 

X-Uk 

. Cli — dh 
i=0 fc=0 ^ " fc=0 

Mult ivar ia te po lynomia l rings 

Let N" = { ( a i , . . . , an) | «; G N} denote the set of multi -indices of size 
n. A monomial in the variables product of the form 

i t j 0^2 • • • •^n ' 

which we denote by X", a £ N". The degree of X" is da = X]"=i cti. 
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D E F I N I T I O N 2.29 A polynomial in n variables xi, . . . , Xn over the field 
F is a finite linear combination over F of monomials in xi, ..., a;„, tha t 
is a formal expression of the form 

5^c„X° 
aeN 

where c^ G F and Â  is a finite subset of N". 

D E F I N I T I O N 2.30 The set of all polynomials in n variables over a field 
F forms a ring under the standard operations of polynomial addition 
and multiplication. This ring is called a polynomial ring over F, and for 
variables xi,... ,Xn is denoted by F[a ; i , . . . , a;„]. 

Let / = 53 CaA" G F[a;i , . . ., Xn] be a multivariate polynomial over F. 
The summands CaX" (c^ ^ 0) are called the terms of / , and c^ is said 
to be the coefficient of X " . The total degree of / is the maximum of 
the degrees of all monomials of / . If all monomials of / have the same 
degree d, we say that / is homogeneous of degree d. 

D E F I N I T I O N 2.31 Let / e F[a;i, . . . , a-„] be a polynomial of total degree 
d. The polynomial / ' ' defined as 

\XQ xa 

is a homogeneous polynomial of degree d in F[a;o, x i , . . . , x^], called the 
homogenisation of / . 

D E F I N I T I O N 2.32 A total ordering -< on the set of monomials X" (where 
a G N") that is compatible with multiplication is called a monomial 
ordering in F [a ; i , . . . , a;„]. An ordering is compatible with multiplication 
if A " -< A ^ implies A « A ^ •< A ^ A ^ for all multi-indices a , /3 ,7 G N". 

We now define three common examples of monomial ordcrings. 

D E F I N I T I O N 2.33 The lex (lexicographic) monomial ordering is defined 
by A " -< X" if the left-most nonzero entry in the vector /? — a G Z" is 
positive. 

D E F I N I T I O N 2.34 The glex (graded lexicographic) monomial ordering is 
defined by A " -< X'^ if, firstly the de gree of A ^ is larger than the degree 
of A " {dp > da), and secondly if dp = da then the left-most nonzero 
entry in the vector /9 — a G Z " is positive. 
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D E F I N I T I O N 2.35 The grevlex (graded reverse lexicographic) monomial 
ordering is defined by X" -< X^ if, firstly the degree of X^ is larger than 
the degree of X " {dp > da), and secondly ii dp = (i„ then the right -most 
nonzero entry in the vector /? — a G Z" is negative. 

E X A M P L E 2.36 Some monomial orderings in F[a;, y, z] are shown below. 

lex ordering 
glex ordering 

grevlex ordering 

2-2^3^6 ^ x'^y'^z and xy'^z -< x'^yz^ 
x^y^z -< x^y^z^ and xy'^z -< x'^yz'^ 
x^y'^z -< x'^y'^z^ and x'^yz^ -< xy^z 

We can see that the pair of monomials x'^y'^z and x^y^z^ and the pair 
of monomials x'^yz'^ and xy^z arc ordered differently under the various 
monomial orderings. D 

Suppose the polynomial ring ¥[xi,... , a;„] has a monomial ordering ~< 
and / 6 F [ x i , . . . , x„] is a polynomial. The leading monomial of / is the 
maximal monomial of / with respect to the ordering ^ and is denoted 
by L M ( / ) . The leading coefficient of / is the coefficient of the leading 
nionomial of / and is denoted by L C ( / ) . The leading term of / is the 
term associated with the leading monomial and is denoted by LT( / ) , so 
LT( / ) = LC{f)LM[f). The multidegree o f / is the degree of the leading 
monomial of / and is denoted by mult ideg(/) . 

These concepts enable us to give a multivariate generalisation of the 
division algorithm for univariate polynomials (Theorem 2.23). 

T H E O R E M 2.37 Polynomial Division Algorithm. Suppose that the poly
nomial ring F[a;i, . . . ,Xn] has a monomial ordering -< and that {gi,... ,gs) 
is an ordered subset of ¥[xi,..., a;„]. For any / G ¥[xi,..., a;„], there 
exist ai, r G F [ x i , . . . , a;„] such that 

/ = aigi + . . . + Usgs + r, 

where either r = 0, or r 7̂  0 and no leading monomial of the polynomials 
gi divides any of the monomials of r. Such a polynomial r is called a 
remainder of the division of / by the set {gi,... ,gs}- Furthermore, if 
(i'i9i 7̂  0, then multideg(ai5i) < mult ideg(/) . 

3. Linear Algebra 
Linear algebra is at the heart of both the design and the analysis 

of the AES. Diffusion in the AES SP-network is achieved by a linear 
transformation. It is therefore not surprising to find linear algebra being 
used as a tool in the analysis of the cipher. 
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Vector spaces 

D E F I N I T I O N 2.38 Lot {V,+) be an abclian group, F a field and • an 
operation ¥ x V -^ V. We say that F is a vector space over F if the 
following conditions hold. 

• a • {v + v') = a • V + a • v' ioi all v,v' & V and a G F. 

• {a + a') • V = a • V + a' • V ioi all V e V and a, a' G F. 

• {aa') • V = a • {a' • v) for all u G V̂  and a, a' G F. 

• 1 • w = ti for all w G y , where 1 is the identity element of F. 

In a vector space, an element of the set V is called a vector and an 
element of the field F is called a scalar. The operation + is known as 
vector addition and the operation • as scalar multiplication. The identity 
element of the abeUan group {V, + ) is called the zero vector and is usually 
denoted by 0. Furthermore, the symbol • is usually omitted if there is 
no danger of confusion. 

E X A M P L E 2.39 The set F " = { ( a i , . . . , a „ ) | a; e F} forms a vector 
space over F with vector addition and scalar multiplication defined by 

( a i , . . . ,a„) + (a ' l , . . . ,a^J = (ai + a^ , . . . , o„ + a'^), and 

a • ( a i , . . . ,a„) = {aai,... ,aa„). D 

A subset t/ of a vector space V over a field F is a subspace oi V if U 
is itself a vector space over F. The notation U < V is used to denote 
that [/ is a subspace of V. The intersection UCiU' oi any two subspaces 
U and U' of V' is a subspace of V. The sum of subspaces U,U' < V, 
defined by 

u + u' = {u + u' \ u e u,u' e u'}, 

is also a subspace of V. This definition extends in the obvious way to 
any finite sum of subspaces. If a vector space F = Ui + ... + Um and the 
subspaces Ui,..., Um have trivial pairwise intersections {Ui n Uj — {0} 
for i ^ j), then V is said to be the direct sum of these subspaces and we 
write V = C/i ® .. . ffi Um- In this case, for any v G V, there exist unique 
Ui G Ui such that v = ui + .. . + Um-

The set of all finite linear combinations of the vectors u i , . . . , u„, G V, 

{vi,..., Vm) = {aivi + ... + a„jW„, | a.; G F, ŵ  e F } , 

is a subspace of V and is called the .subspace generated by the set 
{vi,.,., Vm}. A set of vectors {vi, . . . , « „ } is said to span or to be a 
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spanning set of a subspace U < V ii for all u ^ U there exists â  G F 
such that u = ^ ^ ajW;. 

A 6asi5 for a vector space y is a minimal spanning set for V. Every 
vector in a vector space can be expressed as a unique linear combination 
over F of the elements of a basis. Any basis for a vector space V always 
has the same cardinality, which is called the dimension of the vector 
space V and is denoted by dim(V). 

E X A M P L E 2.40 The multivariate polynomial ring F [a : i , . . . , a;„] forms an 
infinite dimensional vector space over F. The subset of F[a; i , . . . ,Xn 1 of 
all polynomials of degree at most 1 is a subspace of dimension n + 1 with 
basis { l , a ; i , . . . ,a;„}. D 

A set of vectors {vi,... ,Vm} is said to be linearly independent if the 
expression Yll'Li '^•i^i = 0 implies that ai = ... = a„i = 0. If { e i , . . . , e„} 
is a basis B for a vector space V of dimension n, then B is linearly 
independent and for any v & V there exist unique a.; G F such that 
V = aiCi + .. . + a„e„. Thus we can represent v with respect to the basis 
B by the n-tuplo ( a i , . . . , a„) e F" . 

Wc can define cosets of subspaces in a similar manner to coscts of 
subgroups. In particular, the set of all coscts oiUinV forms a vector 
space called a quotient vector space and is denoted by V/U. 

Linear transformat ions 

D E F I N I T I O N 2.41 A linear transformation or vector space homomor-
phism from a vector space V over a field F to a vector space U over F is 
a mapping ijr.V ^ U that satisfies the following two conditions. 

• ip{v + v') = ^{v) + i>{v') for all v, v' e V. 

• tp{av) = a • ip{v) = atp{v) for all w £ F and a G F. 

A vector space isomorphism is a bijective linear transformation, and we 
use V = U to denote that the vector spaces V and U are isomorphic. 

E X A M P L E 2.42 Let y be a vector space over the field F of dimension n, 
and let { e i , . . . , e„} be a basis for V. Given v E V, there exists a unique 
( t t i , . . . , a„) G F " such that v = aie\ + . . . + a„e„. The mapping V -^ F " 
defined by w i—» ( a i , . . . , a„) is a vector space isomorphism. Thus any two 
finite-dimensional vector spaces over the same field are isomorphic. D 

E X A M P L E 2.43 Let y be a vector space of dimension n over the field 
F, and a i , . . . , a „ be elements of F. Then every mapping K —> F of the 
form aie i + . . . + a„e„ \-^ aiai + .. . + anttn is a hnear transformation 
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from V into V, where F is considered as a one-dimensional vector space 
over F. Furtlicrmore, every linear transformation from V -^ F is of this 
form. Such a transformation is known as a linear functional on V. D 

Let tp'.V ^> V he a, linear transformation. Then the kernel of ip is 
defined by ker ^ = {v £ V\ip{v) = 0} and is a subspace of V. The nullity 
of ijj is the dimension of kerf/). The image of the linear transformation 
ijj is a subspace of V', and the rank of i(} is the dimension of ip{V). The 
Rank Nullity Theorem states that 

dim("K) = dim(ker-(/)) + dun{tp{V)). 

The quotient vector space V/keitp is isomorphic to the image of V, 
so i){V) ^ V/kci-il}. If V = V, then the subspace U < V is called 
a ijj'invariant subspace if tl){U) < U. U tp satisfies 'ij) o %[) = tjj^ = tp, 
then xj} is called a projection and ii){U) is a i/)-invariant subspace for any 
subspace U <V. 

If •0:1/ —> y is a linear transformation, then X^j=o aiV"' is also a linear 
transformation on V. Furthermore, the set 

/= i:«' 
is an ideal of the polynomial ring F[a;]. The minimal polynomial of 
the linear transformation •(/) is defined as the unique monic polynomial 
min^(a;) tha t generates the principal ideal I. The minimal polynomial of 
i) gives much information about both if} and the V-invariant subspaces. 
For example, if uim^ix) = mi{x)... rni{x) is the factorisation of the 
minimal polynomial of ip into monic polynomials, then mi(V') has a 
natural interpretation as a linear transformation and the i/j-invariant 
subspaces are given by kermi(i/)). 

D E F I N I T I O N 2.44 Suppose that V and V' arc vector spaces over the 
field F and that -i/;: V —̂  K' is a linear transformation. If 6 is a vector in 
V', then the transformation V ^ V' defined by u i—> i/)(w) + 6 is termed 
an affine transformation. 

D E F I N I T I O N 2.45 Consider a mapping (3 : V y.V ^ V, where V and 
V' are vector spaces over the field F. For w e V, we can define the 
mappings (3'^^,I3'^:V —> y ' by w i--» /3{u,v) and v ^^ 0{v,u) respectively. 
The mapping (3 is called a bilinear transformation on V if /34 and /3" are 
linear transformations for all u Q V. 
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M a t r i c e s 

D E F I N I T I O N 2.46 An mxn matrix over a field F is a rectangular array 

a n . . . ain \ 

with aij G F. The elements called the entries of the matrix. 

If yl is an TO X n matrix, the sequences {an ... am) are called the rows 
of A, and the sequences (aij . . .a„ij) arc called the columns of A. Thus 
A has m rows and n columns. If TO = n, then A is called a square matrix 
of order n. A submatrix of >1 is an m' x n ' matrix (m' < TO and n' < n) 
obtained by taking a block of entries of M with TO' rows and n' columns. 
The transpose of A is denoted by A^ and is the n x m matrix whose 
( i , j )-entry is given by Oj,. 

E X A M P L E 2.47 Let A^mxn(F) denote the set of all TO x n matrices over 
F. We can define the operation of addition of elements of Mmxni^) 
in the obvious way by adding the corresponding entries of the ma
trices. Similarly, we can define the scalar multiplication of a matrix 
AeM mxni^) by an clement c G F to be the matrix obtained by simply 
multiplying every entry of A by c. Thus the set Mmxni^) forms a vector 
space over F of dimension mn. Q 

Let yl be an TO x n matrix and B be an r x s matrix over F defined as 

a n • • • ain \ / bn ... bu N 

ami • • • 0,rim ) \ &rl • • • Ks ) 

If n = r, we can define a multiplication of yl by B. The -product AB is 
the m X s matrix C whose entries are Cy = Yli=i c-ikbkj-

D E F I N I T I O N 2.48 Suppose A is an TO x n matrix over F and that Ai. 
denotes the i*'' row of A. An elementary row operation on the matrix A 
is one of the following three types of operation. 

• The replacement of Ai. by cAi. where c e F with c 7̂  0. 

• The replacement of Ai. by Ai. + cAj. where c £ F and i 7̂  j . 

• The interchange of two rows of A. 

An elementary row operation on the matrix A is equivalent to a map
ping A i-> PA, where P is a TO x TO elementary row operation matrix. 
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Any mxn matrix that can be obtained from Ahy a series of elementary 
row operations is said to be row -equivalent to A. In particular, tliere 
is a special set of matrices called the row reduced echelon matrices, and 
any matrix is row-equivalent to a unique row reduced echelon matrix. 

The rank of an m x n matrix A is the number of linearly independent 
rows or columns (considered as vectors) of A. In particular, if ^ is a 
row reduced echelon matrix, then the rank of A is the number of nonzero 
rows. We note that row-equivalent matrices have tiic same rank. 

Let A1n(F) denote the set of all square matrices over F of order n. A 
matrix A G A^„(F) with entries a.y is a symmetric matrix if A'^ = A, 
tha t is Uij = Gji, and A is a diagonal matrix if fly = 0 whenever i ^ j • 
The identity matrix is a diagonal matrix in which an = 1 (i = 1 , . . . , n) 
and is usually denoted by / . The identity matrix has the property that 
AI — lA = A for any matrix A e jV(„(F). The square matrix A is an 
invertible or non- singular matrix if there exists an n x n matrix A^ 
such that AA~^ = A~^A = I. A matrix is invertible if and only if it is 
row- equivalent to the identity matrix. 

The determinant is a function dct:A4„(F) —> F on square matrices 
with special properties, and this function is widely used in the analysis 
of square matrices [59]. In particular, we have det{AB) = dct{A) dot(-B), 
and a matrix A is invertible if and only if det{A) / 0. 

The set of n x n invertible matrices forms a group under the operation 
of matrix multiplication. This group is called the general linear group 
and is denoted by GL(n ,F) . The subset of all matrices that have deter
minant 1 forms a normal subgroup of GL(n,F) . This subgroup is called 
the special linear group and is denoted by SL(n,F) . Thus we have 

GL(n,F) = { ^ e X „ ( F ) I det(yl) ^ 0 }, and 
SL(n,F) = {Ae MnW) \ det{A) = 1 }. 

Matrices are often used to represent hnear transformations between 
vector spaces and can be particularly useful for performing calculations 
with such mappings. For example, matrices provide an easy way of 
calculating the image of vectors under hnear transformations or of cal
culating the composition of Unear transformations. Furthermore, many 
properties of a hnear transformation, such as its rank, minimal polyno
mial, invariant subspaces, can be easily obtained by analysing a matrix 
corresponding to that linear transformation. 

Suppose that ip : V —^ V is a linear transformation between two 
vector spaces V and V' over a field F of dimensions n and m respectively. 
Suppose further that V has a basis B = { e i , . . . , e „ } and V' has a 
basis B' = { e ' j , . . . , e'^J. Then there exist a^j S F such that '!/'(ei) = 
YliT-i'^ij^'j (1 < * < ^)j and the matrix of the Unear transformation i> 
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with respect to the bases B and B' is defined as the rn x n matrix A 
whose entries are a^. Any v £ V' is given by w = Yll=i'^j^j for some 
Vi e F. In this monograph, we represent vectors as column vectors or 

Vl 

n X 1 matrices. Thus the vector v is given by the column vector 

with respect to the basis B, which we write as {v\,..., Vn) . The effect 
of the linear transformation ip on the vector v is given by 

n n / jn \ m I n \ 

which is expressed in terms of matrices by the matrix multiplication 

a i l • • • air. 

Av 

ami 

f n \ [ a i i^ i + • •. + ainVn 

\ Vn J \ ttmlVl + . . . + a„ 

The composition of linear transformations can also be easily com
puted using matrices, li ip : V ^ V and ip' : V' —* V" arc linear 
transformations, and A and A' are the matrices associated with ijj and 
4>' respectively, then P = A'A is the matrix associated with the Unear 
transformation tp' o ijj : V ^ V". Thus the matrix of a composition of 
linear transformations is the product of the respective matrices. 

We note that the matrix corresponding to a linear transformation 
is not unique as it depends on the basis chosen for the vector spaces. 
Suppose, as above, that we have a linear transformation ip : V —^ V' 
between two vector spaces V and V' of dimension m and n respectively. 
If the linear transformation ip is represented by an m x n matrix A with 
respect to one pair of bases and by another mxn matrix A with respect 
to another pair of bases, then there exist an invertible n x n matrix P 
and an invertible m x m matrix P' such that A = P'AP. We say that 
the matrix A is obtained from 4̂ by a change of basis. 

D E F I N I T I O N 2.49 Let A he an n x n matrix over the field F. The 
minimal polynomial of the matrix A is the unique monic polynomial 
minA(a:;) G ¥[x] of minimal degree such that minA(^) = 0. The charac
teristic polynomial of A is the polynomial CA{X) G F[a;] defined by 

CA{X) = det(a;J — A). 

We note that the minimal polynomial of a linear transformation is the 
same as the minimal polynomial of any of its associated matrices. 
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T H E O R E M 2.50 Cayley Hamilton Theorem. The minimal polynomial 
of a matrix divides the characteristic polynomial. 

E X A M P L E 2.51 Consider the matrix 

A 

f 0 
1 
0 

\ 1 

1 
0 
0 
1 

0 
0 
1 
0 

M 1 
1 

0 / 

over the field Z2. It can be shown that the minimal polynomial of A is 
min/i(a;) = x + 1 and the characteristic polynomial of A is 

CA{X) x'^ + x'^ + x+1. 

We note that the minimal polynomial min^(x) divides CA{X). Further
more, minyi(a;) = {x + l){x'^ + x + 1) as a product of irreducible poly
nomials. Thus, if ^l> : V -^ V is a linear transformation associated with 
A, then the invariant subspaces of ip are given by ker(-0i) and ker(i/'2), 
where ^1 and V'2 ai'c the linear transformations V -^ V' associated with 
the matrices (A + I) and {A'^ + A + I) respectively. D 

Ivlatrices are also widely used in coding theory, and most properties of 
linear codes can obtained by studying their generator and parity check 
matrices. Of special interest in the design and analysis of the AES are the 
matrices that arise from maximal distance separable (MDS) codes [76]. 

D E F I N I T I O N 2.52 An m x n matrix A is called an MDS matrix if and 
only if every square submatrix of A is invertiblc. 

Linear s y s t e m s and matr ix complex i ty 

Matrices can be used to represent systems of hnear equations. Suppose 
we have such a system of m equations in n variables xi,... ,Xn given by 

aiixi + ••• + ainXn = bi 

where a^ and 6, are elements of a field F. This equation system can be 
represented by the matrix equation 

/ an ain \ I Xl hi 

\ ^rnl • • • ^rnn / 
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or equivalcntly Ax = b. The standard process of solving this equation 
system is to transform the matrix A to a row reduced echelon matrix us
ing elementary row operations. This corresponds to finding an invertible 
m X m matrix P such that PA is a row reduced echelon matrix. This 
allows us to obtain an equivalent matrix equation PAx = Pb, which 
gives us an immediate full solution for cc i , . . . , a;„. 

The simplest method of transforming the matrix A to a row reduced 
echelon matrix is known as Gaussian reduction. Performing Gaussian 
reduction on a square n x n matrix takes of the order of n^ field op
erations. However, more sophisticated techniques for row reducing a 
matrix can reduce this to less than cubic complexity. 

D E F I N I T I O N 2.53 An nxn square matrix can be transformed to a row-
reduced echelon matrix with complexity of the order of n " field oper
ations. We call u) the exponent of matrix reduction. Thus w = 3 for 
Gaussian reduction. The smallest values of w occur for row -reduction 
techniques for a sparse matrix, that is a matrix whose almost all entries 
are zero. The exponent of matrix reduction cu satisfies 2 < w < 3. 

A l g e b r a s 

D E F I N I T I O N 2.54 Suppose ^ is a vector space over a field F with a 
multiplication operation ^ x ^ —> ^ . If this multiplication operation is 
associative and a bilinear mapping on the vector space A, then A is an 
(associative) ¥-algebra, or more simply an algebra. 

Informally, we can regard an algebra as a vector space that is also a ring. 
The dimension of the algebra A is the dimension of yl as a vector space. 
The subset ,4' C ^ is a subalgebra of A if A! is an algebra in its own 
right, and A' is an ideal subalgebra if it is also an ideal of the ring A. We 
can also classify mappings between two algebras in the usual way, so an 
algebra homomorphism is a mapping that is both a ring homomorphism 
and a vector space homomorphism. 

E X A M P L E 2.55 The ring of polynomials F[a; i , . . . vector space 
over F (Example 2.40). Thus F [ x i , . . . ,a:„] forms an F-algebra, known 
as a polynomial algebra. D 

E X A M P L E 2.56 The set A4„(F) of n x n matrices over F forms a vector 
space over F of dimension n^ (Example 2.47). Matrix multiplication 
is an associative bilinear mapping on yW„(F). Thus A^„(F) forms an 
F-algebra of dimension n^. The set 'Dn{¥) of n x n diagonal matrices 
over F forms a subalgebra of Mn{¥) of dimension n. Such algebras are 
known as matrix algebras. D 
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4. Finite Fields 
The design of the AES is based around finite fields. All the operations 

used by the AES arc described by algebraic operations on a finite field 
of even characteristic. In this section, we discuss the properties of finite 
fields relevant to the specification and algebraic analysis of the AES. 

Fin i te fields and subfields 

The set Zp = { 0 , . . . ,p — 1} with addition and multiplication operations 
defined modulo p forms a finite field if and only if p is prime (Exam
ple 2.20). This field is called the Galois field of order p and is denoted 
by GF(p). The Galois field GF(p) plays a fundamental role in the theory 
of finite fields. 

D E F I N I T I O N 2.57 Suppose that F and K are two fields. If F c K, then F 
is said to be a subfield of K, or equivalently K is said to be an extension 
field of F. 

T H E O R E M 2.58 A finite field of characteristic p (prime) has a unique 
minimal subfield isomorphic to GF(p). 

If K is a extension field of the field F, then K is also a vector space 
over F. The dimension of this vector space is the degree of the extension. 
If F has order q and K is an extension field of F of degree d, then IK has 
order q'K As every finite field has prime characteristic p, it follows from 
Theorem 2.58 that every finite field has order p " for some prime p and 
some positive integer n. 

T H E O R E M 2.59 For every prime number p and every positive integer n, 
there exists a finite field of order p" . Furthermore, any two finite fields 
of order p " are isomorphic. 

Thus finite fields of order p " arc unique up to isomorphism. This field 
is called the Galois field of order p " and denoted by GF(p") . A subfield 
of GF(p") has order p"^, where d is a divisor of n. Furthermore, there is 
exactly one subfield of order p^ for every divisor d of n. For example, the 
finite field GF(28) has GF(24), GF(22), and GF(2) as proper subfields. 

T H E O R E M 2.60 The multiphcative group GF((?)* is a cychc group of 
order q — 1. 

A generator of the multiplicative group GF(g)* is called a primitive 
element of the field GF(g). The number of primitive elements in GB''((7) 
is ip{q — 1), where ip{m) is Euler's totient function, which gives the 
number of positive integers loss than or equal to m and coprime to m. 
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Expl ic i t cons truct ion of finite fields 

Theorem 2.27 provides a method of constructing a finite field as a quo

tient ring. Suppose F is a finite field of order q = p " and f{x) 6 ¥[x] is 

an irreducible polynomial of degree d. The quotient ring K = jjj^ IS a 

field of order q"^ = p" ' ' , which is an extension field of degree d of F. In 
the manner given in Example 2.25, its elements can be represented as 

Ud-ix'''^^ + • • • + a2X^ + a\x + ao, 

where ai G F. Addition and multiplication are then as described in 
Example 2.25. Theorem 2.59 states that any finite field of order p"'^ is 
isomorphic to K. 

We can also construct GF(p"'^) directly as an extension field of F. 
Let 0 denote a root of the irreducible polynomial f{x) of degree d. The 
set F(6) of all quotients (with nonzero denominator) of polynomials in 9 
with coefficients in F is the smallest field containing both 9 and F. Fur
thermore, ¥{9) is the extension field obtained by adjoining 0 to F. This 
extension field F(^) has p elements and so is isomorphic to GF(p ). 
The elements of V{9) are given by 

aa^v9'^^^ + .. • + a29'^ + aiO + ao, 

where â  £ F. If the element 0 is a generator of the multiphcative group 
of F(0), then the polynomial f{x) is called a primitive polynomial. 

E X A M P L E 2.61 The polynomial m(x) = x^+ x'^ + x^-\-x + l e GF(2)[a;] 
is irreducible. If f? is a root of m(a;), then 

GY{2){9)^^^P^^GY{2^). 
{m{x)) 

The elements of the quotient ring / ^, \ y arc given, for â  G F, by 

ajx -^ . . . -I- a2X + a\x + ao; 

whereas the elements of extension field F(0) are given, for hi G F, by 

67^^ -t- . . . + 626'̂  + &16' + bo. 

We note that m{x) is not primitive, since the order of ^ G ¥{9) is 51. • 

Irreducible polynomials over a field F of order q are the basic tools 
for the construction of all finite extensions of F. If K is an extension 
of F of order g", then Theorem 2.60 shows that a* ^^ — 1 = 0 for all 
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nonzero a G K. Thus the polynomial a;'' — x has all g" elements of K 
as a root. The field K = GF((/"') is known as the splitting field of the 
polynomial a;*̂  —x. This polynomial can be used to obtain all irreducible 
polynomials over F with the required degree. 

T H E O R E M 2.62 Let F be a finite field of order q. Then the polynomial 
x ' — a; £ F[a;] is the product of all monic irreducible polynomials in F[a;] 
whose degree divides n. 

The number of irreducible polynomials in F[a;] of degree n is given by 

i^Mdk^, 
n 

d\n 

where /i is the Mohius function, defined by / i( l) = 1, ^{n) = (—l)*^ if 
n is the product of k distinct primes, and 0 otherwise. The number 
of primitive polynomials of degree n is -<^((J'" — 1), where (/? is Euler's 
totient function. 

E X A M P L E 2.63 There are i (^(1)2** + / i (2 )2 ' '+ / i (4 )22 +/ i (8)2 i ) = 60 
irreducible polynomials of degree 8 in GF(2)[a;], of which \ip{2^-1) = 16 
arc primitive polynomials. D 

D E F I N I T I O N 2.64 A field F is said to be algebraically closed if every 
polynomial in F[a;] has a root in F. The algebraic closure of a field F is 
the smallest extension field K of F such that K is algebraically closed. 

R e p r e s e n t a t i o n s of a finite field 

Let F be a field and K = ¥{0) be an extension field of F of degree d. 
The most common way to describe the elements of K is to regard all 
elements as vectors in the vector space K of dimension d over the F. 
Every element in K can be written uniquely as 

ad-ie'^~^ + . . . + 026*2 + aiO + ao, 

as where Oj e F. Thus the set {9 ,... ,9 ,9,1] forms a basis of 
a d-dimensional vector space over F. This basis is called a polynomial 
basis for the field K. 

E X A M P L E 2.65 Suppose 6' is a root oi x^ + x'^ + x^ + x+ 1 e GF(2)[a;], 
and let K be the field GF(2)(6') (Example 2.61). Any multiphcation 
mapping K —» K is a linear transformation of K as a vector space over 
GF(2). The squaring mapping in K is also a hncar transformation. If 
we let Tf) and S denote the matrices that correspond to nmltiplication 
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by Q and squaring with respect to the polynomial basis \(f ^..., 0^, 0 ,1}, 
then we have 

/ 0 1 0 0 0 0 0 0 \ 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
1 0 0 0 1 0 0 0 
1 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 1 

V i o o o o o o o / 

D 

There are other bases which are used for the field K when considered as 
a vector space over F, such as the normal basis {/?, /?'', / ? ' ' , . . , , /̂ "̂  } for 
suitable /? £ K. This representation is particularly useful when perform
ing the exponentiation of elements in K and may offer implementation 
advantages in some situations. 

There are also methods of describing an element of the finite field 
K of order q"' which depend on logarithmic functions of K rather than 
the vector space aspect of K. Suppose /? is a primitive clement of K 
and a = /3'' (0 < i < q" — 1). The discrete logarithm is a function 
log Z„ defined by a = log fj/3''' = i. We can thus 
represent the nonzero elements a £ K by log^a £ Z^n_i. If we adopt 
the convention that the discrete logarithm of 0 is denoted by oo, then we 
can represent an element of K by an element of Zgn_i = Z^n_i U {oo}. 

The Zech or Jacobi logarithm offers another logarithmic method for 
describing a finite field element. The Zech logarithm is based on the 
function Z: Zgn_l Zgi - i given by 

Z{n) = log^(/3" + 1) 

so /3^(") = /3" + 1 with the convention that /3°° = 0. The definition 
can be extended to all integers by working modulo 17" — 1. The Zech 
logarithm of /3" can now be defined to be Z{n). We have the following 
identities concerning this function Z: 

Z{Z{n)) = n, 

Z{2n) = 2Z{n), 

Z{--n) = Z{n)~n. 

This function is of interest since it can be used to calculate the sum of 
two powers of /?, since 

om , an __ on/om-n i i \ _ /Q"fjZ{m-n) _ gn+Z{m-n) 



28 ALGEBRAIC ASPECTS OF THE AES 

Funct ions in a finite field 

D E F I N I T I O N 2.66 Let F be a finite field of order q and K be an extension 

field of F of degree d. The elements a,a'^,a'' ,..., a'' arc the conjugates 

of a £ K. with respect to F. 

T H E O R E M 2.67 Suppose K is an extension of a field F of degree d. 
Any element a € K is a root of an irreducible polynomial / ( x ) G F[a:] of 
degree n dividing d. The roots of f{x) arc the conjugates of a. 

We now consider some functions of interest on finite fields. 

D E F I N I T I O N 2.68 Let F be a finite field of order q and K be an extension 
field of F of degree d. The trace function on K with respect to F is the 
function Tr: K —> F defined by 

Ti{a) = a + a" + a"'' + ... + a'i''"\ 

Thus the trace of an element a £ K is the sum of all conjugates of 
a. The trace function is a linear functional on K, considered as a vector 
space over F (Example 2.43). In fact, any linear functional on K is of 
the form a >—> Tr(/3a) for some /3 £ K. 

D E F I N I T I O N 2.69 Let F be a finite field of order q and K be an extension 
field of F of degree d. The norm function on K with respect to F is the 
function N: K ~» F defined by 

N(o) = a a ' ' a"' ... a""'' = a"^. 

Thus the norm of an clement a G K is the product of all conjugates 
of a. The norm function is a group homomorphism K* -^ ¥* between 
the multiplicative groups of the fields K and F. 

D E F I N I T I O N 2.70 A linearised polynomial f{x) £ K[x] is a polynomial 
given by 

f{x) = aox + aix'' + a-ia;' + . . . + a.^-ix'' , 

where a.; £ K. Thus a linearised polynomial f{x) is a polynomial whose 
evaluation / ( a ) for any a £ K gives a hnear combination of the d conju
gates of a. 

Linearised polynomials are hnear transformations on K, when considered 
as a vector space over F. Conversely, any linear transformation of K over 
F can be expressed as a linearised polynomial. 
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E X A M P L E 2.71 Any linear transformation of GF(2^) as a vector space 
over GF(2) can be represented by a (linearised) polynomial of the form 
f{x) = aox'^° + aix'^^ + 020;̂ ^ + . . . + aya;^ , where a-i e GF(2*). n 

We now consider the field GF(p'') as an extension field of GF{p), where 
p is prime. The mapping r : GF(p'^) -^ GF(p'^) defined by a i-+ a^ maps 
a to one of its conjugates with respect to GF(p). This mapping satisfies 

T{a + a') = T{a) + T{a') and T{aa') = T{a)T{a'). 

Thus r is a field automorphism of GF(p'^), known as the Frobenius auto
morphism. The set of all automorphisms of G¥{p'^) under the operation 
of composition is the cyclic group of order d generated by r . We note 
that T fixes all elements of the subfield GF(p) of GF(p' ') . Thus the 
automorphisms of GF(p'^) are also hncar transformations over GF(p). 

5. Varieties and Grobner Bases 
A large part of this monograph is concerned with expressing an AES 

encryption as a system of polynomial equations and considering methods 
of solution for such equations. In this section, we give a brief overview 
of the basic concepts used to analyse such equation systems. 

Variet ies 

An affine subset of a vector space V̂  is a cosct or translate C/ + u of 
some subspacc U < V. The affine space based on V is the geometrical 
space given by considering certain geometrical properties of the affine 
subsets of V [58]. Thus we can usually identify the n-dimensional affine 
space over a field F with F" . The projective space PG{n,¥) is the 
geometrical space given by considering the one-dimensional subspaces of 
the (n -|- l)-dimensional vector space F"+^. Thus we can represent an 
clement of PG{n, F) by a nonzero vector (ao, a i , . • . , ««) G F " + \ where 
all nonzero scalar multiples of (ao, a i , . . . , a„) represent the same element 
oiPG{n,¥). 

D E F I N I T I O N 2.72 Let F be a field and F " denote the n-dimcnsional 
affine space over F, and suppose that / i , . . . , / m are polynomials in 
F [a ; i , . . . , x„]. The affine variety defined by fi, • • •, fm is the subset of 
F " given by 

{ ( a i , . . . , a „ ) e F " I / i ( a i , . . . , a „ ) = 0 for i = 1 , . . . , m } . 

This variety is denoted by V ( / i , . . . , fm)-
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Thus the affinc variety of Definition 2.72 describes the set of solutions 
in F of the polynomial equation system 

/ i ( a ; i , . . . , a ; „ ) = 0 , . . . , / „ i ( a ; i , . . . ,a;„) = 0. 

E X A M P L E 2.73 Consider the polynomial ring IR[x,j/] in two variables, 
and let / ( x , y) = x^ -\- xp — \ and g{x, y) = x — 1 he two polynomials 
in lR[a;,y]. The affinc variety V( / ) consists of the points in the circle 
of radius 1 in R^ and is the solution set of the equation x"^ + y"^ = 1. 
The affine variety V{f,g) = {(1,0)} g K^ is the set of solutions to 
f{x,y) = g{x,y) = 0. n 

D E F I N I T I O N 2.74 Let PG(n, F) denote the projective space of dimen
sion n. Suppose that / i , . . . , / m are homogeneous polynomials in the 
polynomial ring F[a:o, xi,..., Xn]- The projective variety defined by the 
polynomials / i , . . . , / „ is the subset of PG(n ,F ) given by 

{ ( a o , a i , . . . , a „ ) € PG(n ,F ) ] /i(ao, a i , . . . , a„) = 0 for i = 1 , . . . , m }. 

The projective space PG(n ,F ) can be partitioned into two subsets U 
and H, where 

U = { ( a o , a i , . . . , a „ ) G P G ( n , F ) I a o / O }, and 

H = { ( 0 , a i , . . . , a „ ) e P G ( n , F ) }. 

The subset U can be identified with the affine space F " by using the 
mapping 

( a o , a i , . . . , o „ ) H^ — , . . . , — 
\ a o ao 

Furthermore, the subset H can be identified with the projective space 
PG(n — 1, F) by using the mapping (0, a i , . . . , a„) i-^ ( a i , . . . , a„)- Thus 
the projective space PG(n ,F ) can be partitioned into an affinc space U 
and a projective space H of smaller dimension. The projective part H 
is known as the hyperplane at infinity of P G ( n , F ) . 

Given a projective variety W € P G ( n , F ) , the set V = W H U can 
be considered as an affine variety of F " and is called the affine portion 
of W. Thus every projective variety W can be seen as consisting of an 
affine variety V together with its points at infinity WnH. Theorem 2.75 
summarises the relationship between an affine and a projective variety. 

T H E O R E M 2.75 Let V C F " be the afline variety defined by the poly
nomials / i , . . . , fm S F[a ; i , . . . , Xn]. If f-^ denotes the homogenisation 
of the polynomial fi, then the variety W defined by the polynomials 
fi\--->fm S lF[a;o,a;i,... ,x„] is a projective variety of P G ( n , F ) , of 
which the affine portion is W nU = V. 
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The above definitions of affine and projective varieties arc given in 
terms of a finite set of polynomials. However, Tlicorem 2.76 sliows that 
varieties are in fact defined by polynomial ideals. 

T H E O R E M 2.76 Let / be an ideal of F[a; i , . . . ,a;„]. If V(/) denotes the 
set 

{ ( a i , . . . ,a„) e F " I / ( a i , . . . ,a„) = 0 for / e / }, 

then V(/) is an affine variety. Furthermore, if / = ( / i , . . . , / m ) , then 

V(/) = V ( / i , . . . , / ™ ) . 

Similarly, a projective variety can be defined by a homogeneous ideal 
ofFf xo,xi,..., Xji], that is an ideal which is generated by homogeneous 
polynomials. 

G r o b n e r b a s e s 

Theorem 2.76 means that the problem of finding the solutions of a poly
nomial equation system over a field F is often studied in the context 
of commutative algebra and polynomial ideals. The solution set of a 
particular system 

/ l ( x i , . . . , a ; „ ) = 0 , . . . ,frn{xi,...,Xn)=0 

can be found by computing the variety V(/ ) , where / = ( / i , . . . , / „ ) . In 
particular, any generating set of / can be used to compute V(J). The 
Hubert Basis Theorem states that any ideal / <l F [a ; i , . . . , a;„] is finitely 
generated. A Grobner basis of the polynomial ideal J is a particular 
type of generating set of / and can be particularly useful in obtaining 
various properties of I, including the variety V( / ) . 

D E F I N I T I O N 2.77 Suppose that F[a ; i , . . . ,a:„] is a polynomial ring over 
a field F with a monomial ordering and that I <1 F[a ; i , . . . , a;„] is a non 
trivial ideal. We let LT(/) denote the set of all leading terms of elements 
of / and (LT(/)) denote the ideal generated by the monomials in LT( / ) . 
A finite set G = {ffi,. •. ,5s} C J is said to be a Grobner basis of / if 

( L T ( 3 i ) , . . . , L T ( 3 s ) ) = ( L T ( / ) ) . 

Thus G is a Grobner basis of / if and only if the leading term of 
any polynomial in / is divisible by at least one of the leading terms 
{LT(5 i ) , . . . ,LT(f l , )} . 

Every non trivial ideal / < F[a ; i , . . . , Xn] has a Grobner basis, which 
is a generating set or basis for the ideal / , If G is a Grobner basis of / 
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and f £ I, then the set G U {/} satisfies Definition 2.77 and is also a 
Grobner basis of / . Thus an ideal does not have a unique Grobner basis. 

D E F I N I T I O N 2.78 A reduced Grobner basis for J is a Grobner basis G 
such tha t the leading coefficient of every polynomial in G is 1 and none 
of the monomials of any / € G is divisible by the leading term of any 
other polynomial in G. Thus in a reduced Grobner basis G, no monomial 
of / e G belongs to the ideal ( LT{G \ {/}) ). 

Every non-trivial ideal / of F[ ] has a miique reduced Grobner 
basis (with respect to a specific monomial ordering). We can obtain the 
reduced Grobner basis for / from a Grobner basis G for / by dividing 
or reducing each / £ G by the set G \ { /} . 

E X A M P L E 2.79 We consider the ring of real polynomials in throe vari
ables M[a;,2/, z] with the grevlex ordering. The set 

{z^ - x^ij, yz'^ + X, xy^ + z^) 

is a (reduced) Grobner basis for the ideal of K[a;, y, z] generated by those 
three polynomials. By contrast, consider the set 

G = {xy"^ + zx, y'^z + z'^ — y} 

and the ideal / generated by these two polynomials. We have 

xy = z{xy^ + xz) — x{y'^z + z'^ — y), 

so xy e I. However, xy is not divisible by the leading term of cither 
polynomial in G {xy'^ or y'^z). Thus G is not a Grobner basis for the 
ideal / . D 

Theorem 2.80 gives a sufficient condition in terms of the greatest com
mon divisor of pairs of leading monomials for identifying whether a set 
is a Grobner basis of a polynomial ideal. 

T H E O R E M 2.80 Suppose G c F[a ; i , . . . , Xn] is a set of polynomials such 
that gcd(LM(/),LM((;)) = 1 for aU distinct f,g e G. Then G is a 
Grobner basis for the ideal (G). 

Thus, if the leading monomials of all polynomials in a set G are pair-
wise coprime, then G is a Grobner basis for the ideal generated by the 
polynomials of G. However, Example 2.79 shows that the condition of 
Theorem 2.80 is not necessary for a set G to be a Grobner basis of (G). 

Grobner bases arc an extremely powerful concept, with many apph-
cations in commutative algebra, algebraic geometry, and computational 
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algebra. For example, Grobncr bases can be used to solve the ideal 
membership problem, that is to decide whether a polynomial / is in an 
ideal / < Ff xi,..., Xn]. A polynomial / is in J if and only if / reduces 
to zero with respect to a Grobncr basis of / , that is the division of / by 
a Grobncr basis of / has remainder zero (Theorem 2.37). 

The main relevance of Grobner bases to cryptology is the problem of 
solving polynomial equation systems. If we have such a system 

fi{xi,.. .,Xn) = 0 , . . . , / m ( a ; i , . . . , a : „ ) = 0, 

then we can find its solution set by computing the Grobner basis for the 
ideal / = ( / i , . . . , fm) and computing the associated variety V( / ) . The 
Grobner basis of / provides implicit solutions to the equation system 
over the algebraic closure of the field F. A particularly useful monomial 
ordering for finding solutions to this polynomial equation system in F is 
the lex ordering, which is an example of an elimination ordering. 

It is worth noting that equation systems arising in cryptography of
ten display many properties. Cryptographic equation systems are often 
defined over a small finite field GF((7) and the solutions of cryptographic 
interest lie in this field. In this case, we could add the field relations 
xf — Xi to the original equation system. In this way the solutions of 
the extended equation system are restricted to the base field GF((/). 
Furthermore, cryptographic equation systems often have a unique so
lution ( a i , . . . , a „ ) e GF(g)". In this case, the reduced Grobner basis 
of the ideal corresponding to the extended equation system would be 
{xi -ai,...,Xn - a„}. 

We discuss some methods and algorithms for computing a Grobner 
basis of an ideal I < ¥[xi,..., x„] in Section 6.1. 



Chapter 3 

DESCRIPTION OF THE AES 

This chapter gives a brief description of the AES and its design ratio
nale. We place a particular emphasis on areas that are most relevant to 
subsequent chapters. The AES is a block cipher with a block size of 128 
bits and a key size of 128, 192, or 256 bits. Wo denote those versions by 
AES-128, AES-192, and AES-256 respectively. This monograph focuses 
on AES-128 and we follow the formal description given in FTPS 197 [95]. 

1. Structure 
The standard view of the AES is as a series of operations on a square 

array of 16 bytes [37, 39, 95]. The mathematical foundations that we 
need for this description are given in Chapter 2. 

A E S b y t e s tructure 

An important aspect of any cipher is the method of data representation. 
We first discuss the structure used to represent a byte of data and then 
the structure used to represent the 16-byte blocks of data. 

A byte is conventionally viewed as an ordered sequence of eight bits. 
Thus a byte consisting of the eight bits b7b6b5b4b3b2bibo can be viewed 
as a vector in an 8-dimcnsional vector space over GF(2). 

A byte can also be viewed as an element of the finite field GF(2**). 
The AES standard [95] specifics a representation of a byte in GF(2^) by 
defining this field in terms of the polynomial 

m(x) = x^ + x'^ + x^ + X + 1, 

which is irreducible in GF(2)[a:]. We term the above polynomial m{x) the 
Rijndael polynomial. From Section 2.4, there are two equivalent methods 
to define the field GF(2^) with respect to this irreducible polynomial, 
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Figure 3.1. The AES array of bytes. 

either as a quotient ring or as an extension field. We refer to the field 
GF(2*) defined by the Rijndael polynomial as the Rijndael field and 
denote it by F throughout this monograph. Thus F = GF(2)[a:]/(m(a;)) 
or F = GF{2){8), where 6 denotes a root of the Rijndael polynomial, 
termed the Rijndael root. The representation of a byte b7b6b6b4b3b2bibo 
in F can then be given in cither of the following two equivalent ways. 

• Quotient Ring: h-jx^ + hex^ + bsx^ + h^x^^ + h^x^ + b2a;^ + bia; + bo. 

• Extension Field: b /^^ + be^*^ + bg^^ + b46''* + hsO^ + 'o-^B'^ + bi6' + bo. 

In the AES, bytes are represented as elements of the Rijndael field F 
and are combined using addition (which is equivalent to bitwise XOR) 
and multiplication in the field. 

We use the common practice of representing a byte using hexadecimal 
notation, and we interpret such hexadecimal notation as a vector or field 
clement depending on the context. For example, 24 represents the bit 
string 00100100, the column vector (0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 )^ , or the element 
(fi + 0^ in the extension field, according to the context. 

A E S block s tructure 

The AES transforms the plaintext into the ciphertext via a sequence of 
intermediate 128-bit states. Full details of how the AES represents a 
string of 128 bits as a set of 16 bytes are exphcitly given in [95]. The 
16 bytes in the state or a round key can be represented by the string of 
bytes 

B^BiB2B^BAB^BeB7BiB^Bx^BxxBnBnBuBx^. 

An equivalent representation is as a 4x4 array S of these bytes, where 
<S(ij) = Bij-^i (0 <i,j< 3), as shown in Figure 3.1. 
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Figure 3.2. Schematic overview of the AES encryption. 

E n c r y p t i o n 

There are four basic operations when encrypting with the AES. These 
operate on tlie state array of 16 bytes. 

• SubBytes modifies the bytes in the array independently. 

• ShiftRows rotates the four rows of tlic array independently. 

• MixColumns modifies the four columns of the array independently. 

• AddRoundKey adds the bytes of the round key and the array. 

These basic operations form a typical round of encryption. A complete 
description of AES encryption requires an initial AddRoundKey ("Round 
0") followed by NR rounds of computation, where Â ^ = 10, 12, or 14 
for AES-128, AES-196, or AES-256 respectively. The last round of com
putation does not contain a MixColumns operation. The sequence of 
operations for an AES encryption is summarised in Figure 3.2. 

SubBytes. 

The AES S-box S[-] provides a permutation of the sot of 256 possible 
input bytes and is given as a look-up table in Figure 3.3. The opera
tion SubBytes modifies the byte values by Bi H^ S[i3i] (0 < i < 15) or 
cquivalently, the array elements Sij by Si^j i-̂  S[iSij] (0 < i, j < 3). A 
mathematical description of SubBytes is given in Section 3.2. 

ShiftRows. 

Each row i (0 < i < 3) of tiie 4 x 4 byte array <S is rotated to the left by i 
positions. Thus ShiftRows modifies the byte values by (where subscripts 
are interpreted modulo 4) 
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Figure 3.3. The AES S-box used in SubBytes. The value of S[xy] is given at the 
intersection of row x- and column -y. 

MixColumns. 

Each column of the 4x4 byte array S is regarded as a column vector 
over the Rijndael field F. It is then updated by multiplying the column 
vector by a specified 4x4 matrix over F. Thus MixColumns modifies the 
state array by the matrix multiplication (0 < j < 3) 

( So,i \ 
Si,i 
^•2,j 

V s^J J 

1 02 03 01 01 \ 
01 02 03 01 
01 01 02 03 

l̂  03 01 01 02 j 

( Soj \ 
Si.i 
S2,i 

\ '53. J 

AddRoundKey. 

The AES key schedule processes the user-supplied key to give the 16-
byte round keys /C,.,o • • • ^r,i5 (0 < r < Nr) for the AES. In round r, 
AddRoundKey updates the state array by Bt i—> H; + /C,-,; (0 < i < 15) or 
equivalently by Sij H~» S.ij + ICr^ij+i (0 < i, J < 3). 

Key schedule 

The generation of the AES round keys is straightforward even though 
three key sizes are supported. Generally speaking, key material is gener
ated recursively, and at each round sufficient key material is extracted to 
form a 128-bit round key. We only give a description of the key schedule 
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Figure S.4- A schematic overview of the AES-128 key schedule. 

for AES-128, though the key schedules for AES-192 and AES-256 are 
similar. Full details are given in [95]. 

We assume that the round key at round r (0 < r < 10) is given by 
K-rfl • • • /Cr,l5 where the user-supplied key forms the round key at round 0. 
In order to form the round key for round s = r + 1, we first define a 
temporary word TQTITITI, of four bytes by 

TQ = S[ACr,i3] + d'^,T\ = 'S>'\K,r^\\\,T2 = S[^r,i5], and Tj = S[/Cr,i2], 

where Q is the Rijndael root. The key for round s is then given by 

^&,i = 
0 < i < 3 
4 < i < 15. 

In summary, the temporary word ToTiT^Ts is generated using the non
linear key schedule function Fi. This consists of applying the S-box to 
all components of the input, a rotation of bytes, and the addition of a 
round-specific constant. This process is illustrated in Figure 3.4. 

D e c r y p t i o n 

Decryption for the AES can be performed by using the inverse of the 
four operations in reverse order, with the round keys taken in reverse 
order. Since the operations SubBytes and ShiftRows commute and 
MixColumns is omitted from the final round [37, 39, 95], there is an 
equivalent description of the AES decryption that mimics the sequence 
of operations during encryption. 

InvSubBytes. 

The inverse of the AES S-box, S~^[-], is easily derived. The operation 
InvSubBytes modifies the state by Bi i—> S~ [,8̂ ] (0 < i < 15) or, in 
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Figure 3.5. The inverse of the AES S-box iised in InvSubBytes. The value of S ''[xy] 
is given at the intersection of row x- and column -y. 

terms of the state array, the array elements _,_ 
(0 < i,j < 3). The inverse of the S-box is given 
Figure 3.5. 

'ij by Si J _ _̂.__,j 
as a look-up table in 

S [Si J 

InvShif tRows. 

Each row i (0 < i < 3) of the 4 x 4 byte array S is rotated to the right by i 
positions. Thus InvShiftRows modifies the byte values by Sij ^ '5,j+i, 
where the subscripts are interpreted modulo 4. 

InvMixColumns. 

Each column of the 4x4 byte array iS is regarded as a column vector 
over the Rijndael field F , which is updated using the inverse of the 4 x 4 
MixColumns matrix over F . Thus InvMixColumns modifies the state 
array by the matrix multiplication (0 < j < 3) 

/ So,j \ / OE OB OD 09 \ 
Si J 09 OE OB OD 
S2,j "^ OD 09 OE OB 

\ S3J J \ OB OD 09 OE / 

f '5o,, \ 

V '53,, J 
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Figure 3.6. The AES inversion within the S-box. 

2 . D e s i g n R a t i o n a l e 
Each component of the AES was carefully chosen and has a specific 

role. The design rationale is discussed in [37, 39] and wc only present the 
essential points here. Each round of the AES is considered to have three 
parts . The first is SubBytes, in which a substitution is performed on 
each byte of the state array. This is termed the substitution layer. The 
second part is Shif tRows followed by MixColumns, which gives difi^usion 
across the state array. This is termed the diffusion layer. The final part 
of an AES round introduces key material by AddRoundKey. We now 
discuss the substitution and diffusion layers. 

S u b s t i t u t i o n layer 

The substitution layer is based on the AES S-box which is, in turn, 
defined by the composition of three operations. 

Inversion. The AES inversion operation is inversion in the Rijndael 
field F , but extended so that 0 i—> 0. Thus, the input byte to the 
S-box is regarded as an element w £ F and for w 7̂  0 the output x 
satisfies x = w and wx = 1. We denote the extension to the case 
vj = 0 hy X ~ w^^^' and give a look-up table in Figure 3.6. 

GF{2)-linear mapping. The GF(2)-Hnear mapping is a hnear trans
formation ^ : GF(2)* —» GF(2)^ specified by an 8x8 circulant matrix 
over GF(2). The result x of inversion is regarded as a vector in 
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Figure 3.1. The AES GF(2)-linear mapping within the S-box. 

GF(2) , and the output vector y is given by j / = ^(s;), where 
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xe 
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We give a look-up tabic for the GF(2)-linear mapping in Figure 3.7. 

S-box constant. The output byte y of the GF(2)-linear mapping is 
regarded as an clement of the Rijndael field F and added to the field 
clement 63 to produce the output from the S-box. 

The rationale for using the inversion operation is that it provides 
good local resistance [98, 99] to the standard block cipher cryptanalytic 
techniques of differential [11, 10, 68] and linear [78] cryptanalysis. The 
rationale for the use of the GF(2)-linear mapping and the S-box constant 
is to increase the algebraic complexity of the S-box and to remove fixed 
points respectively [37, 39]. 
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Diffusion layer 

The diffusion layer has been designed in accordance with the wide trail 
strategxj [35, 39]. For the AES, the wide trail strategy is based on the 
4 x 4 matrix over F used in MixColumns. This matrix is the parity check 
matrix for a maximal distance separable (MDS) code [76], and such a 
matrix is known as an MDS matrix (Definition 2.52). A 4 x 4 matrix over 
F operates on four input bytes and gives four output bytes. For the 4 x 4 
MDS matrix used in MixColumns, cither all the input and output bytes 
arc zero, or at least five of those eight bytes arc non-zero. This MDS 
property is used to ensure that the number of active S-boxes involved in 
a differential or linear attack increases rapidly, and the security of the 
AES against these particular attacks can be established. 

0-inversion 

When 00 is used as input to an AES S-box, inversion in the Rijndael 
field F is extended, and we term this a 0-inversion. The AES-128 has 
10 rounds and each round requires 16 S-box computations, so the prob
ability of there being no 0-invorsions during an AES-128 encryption is 
(lll)i'^o ^ 0-53. Similarly, the AES-128 key schedule requires 40 S-box 
computations, so the probability of there being no 0-invcrsions during an 
AES key setup is (§11)'*° ~ 0.86. These calculations assume statistical 
independence of the 0-invcrsions. 

3. Small Scale Variants of the AES 
In this section we describe small scale variants of the AES that arc 

intended to provide a fully parameterised framework for detailed analy
sis [22]. Other small scale variants have been proposed, though usually 
as an educational, rather than an experimental, tool [91, 102]. 

Two sets of small scale variants of the AES are defined in [22] and 
these differ only in the form of the final round. The two sets of variants 
are denoted SR(r, ri/j, ric, e) and SK*{r,nft,nc,e), with SR(r, nR,nc , e) 
including a MixColumns operation in the last round. Both are parame
terised in the following way: 

• r is the number of rounds, 

• riji is the number of rows in the rectangular grid of the state, 

• ric is the number of columns in the rectangular grid of the state, 

• e is the word size (in bits). 

Both SR(r, riji, ric, e) and SR*(r, Uji, Uc, e) have a block size of nnUce 
bits and the full AES is modelled by SR*(10, 4,4, 8). The data block is 



44 ALGEBRAIC ASPECTS OF THE AES 

Inversion in GF(2'') 
Input 

Output 
0 
0 

1 

1 

2 

9 
3 
E 

4 
D 

5 
B 

6 
7 

7 

6 

8 
F 

9 
2 

A 

C 
B 

5 

C 
A 

D 

4 

E 

3 
F 

8 

GF(2)-linear mapping in GF(2'') 
Input 

Output 
0 

0 

1 

D 
2 
B 

3 

6 

4 

7 

5 
A 

6 
C 

7 
1 

8 
E 

9 

3 

A 

5 

B 

8 

C 

9 

D 

4 

E 

2 

F 

F 

Full S-box over GF(2'') with S-box constant 6 
Input 
Output 

0 
6 

1 
B 

2 
5 

3 
4 

4 
2 

5 
E 

6 
7 

7 
A 

8 
9 

9 
D 

A 
F 

B 
C 

C 
3 

D 
1 

E 
0 

F 

8 

Figure 3.8. An equivalent S-box over GF(2*) for small scale variants of the AES. 

viewed as an n^ x ric array of words of e bits. Useful small scale variants 
exist when both n^ and ric are restricted to 1, 2, or 4. Examples of such 
arrays with words numbered in the AES style are given below. 
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The word sizes e = 4 and e = 8 are the most relevant and are defined 
with respect to the fields GF(2'') and GF(2*^). The field G¥{2^) is de
fined by the primitive polynomial x'^ + x + 1 over GF(2) with root p. 
Thus SR(n, c, e,4) uses the field GF(2)[X]/(a;'* + a; + 1) or cquivalcntly 
GF(2)(/9). Small scale variants over GF(2*) use the Rijndael field F. 

We define a round of the small scale variants over the field GF(2'') 
by describing variants of the AES operations. An S-box over GF(2^) 
consists of the following three (sequential) operations, which are sum
marised in Figure 3.8. 

• Inversion. The first operation is an extended inversion in the field 
GF(24) (with 0 Ĥ  0). 

• GF{2)-linear mapping. The 4x4 matrix over GF(2) used to define 
the GF(2)-linear matrix is the circulant matrix 

/ 1 1 1 0 \ 
0 1 1 1 
1 0 1 1 

V I 1 0 1 / 

S-box constant. The output from the S-box is produced by adding 
the S-box constant 6 to the output of the GF(2)-linear mapping. 
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The small scale equivalent of Shif tRows is the simultaneous left ro
tation of row i in the data array by i positions {0 < i < rin — 1). The 
small scale equivalent of MixColumns multiplies each column of the state 
array by an invertible circulant MDS matrix over GF(2'^). The matri
ces required for the different variants arc all specified in [22], and they 
preserve the essential qualities of the original AES operation. Finally, 
the small scale variant of AddRoundKey is the obvious analogue, with the 
corresponding key schedules also being defined in [22]. 

These small scale variants retain, as far as possible, the algebraic 
features of the AES. They often have a small key space and can easily 
be analysed by exhaustive key search or equivalent techniques. However, 
the main purpose of these small scale variants is to assist in the algebraic 
analysis of the AES. Some experimental results based on these small scale 
variants arc discussed in Chapter 6. 



Chapter 4 

ALGEBRAIC PROPERTIES OF THE AES 

The first public comments on the algebraic structure of Rijndacl were 
made towards the end of the AES selection process [67, 88, 111]. This 
chapter provides a summary of much of the related work that has fol
lowed the publication of Rijndael as the AES. 

1. Round Structure 

The AES design is an example of an SP-nctwork, in which each round 
usually consists of three phases [113]. The first phase is a localised 
nonUnear transformation or substitution of the state, that is nonlinear 
transformations arc applied to the various sub-blocks of the state. The 
second phase is an extensive linear diffusion of the entire state. The final 
phase combines the state with the key material. In the design rationale 
for the AES, the first phase is performed by the SubBytes operation, 
the second phase by the combination of the Shif tRows and MixColumns 
operations, and the final phase by the AddRoundKey operation. 

The role of Shif tRows and MixColumns is to provide diffusion within 
the AES. They are both linear transformations of the cipher state over 
the Rijndael field F . The Shif tRows operation provides what is termed 
high dispersion, whilst the MixColumns operation provides high local dif
fusion. The two operations combine to give a highly efficient diffusion 
as required in the wide trail strategy [39]. However, in this section we 
give an alternative method of analysis [38, 87, 88] for diffusion in the 
AES. This analysis uses simple algebraic tools to explore the underlying 
structure of the AES component operations and their combination. We 
begin by considering the operations in a single round of the AES. 
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SubBytes operat ion 

The AES S-box has three component transformations, namely the 
augmented mversion w -^ -u)(~-^\ a GF(2)-Unear mapping, and the ad
dition of a constant (Section 3.2). Tire inversion operation has proper
ties [98] that resist standard cryptanalysis, while the other components 
in the S-box are used to disguise its algebraic simphcity and to provide 
a "complicated algebraic expression if combined with the inverse map
ping" [37]. In this way, an argument can be made for the resistance of 
the AES to the interpolation and similar attacks [62, 63]. Furthermore, 
the S-box constant 63 was "chosen in such a way that the S-box has no 
fixed points and no opposite fixed points" [37]. 

The final two S-box operations, the GF(2)-linear mapping and the 
addition of the S-box constant 63, form an affine transformation over 
GF(2). The 8x8 matrix for the GF(2)-linear mapping on a byte is given 
in Section 3.2. The GF(2)-linear mapping on the entire state space 
is thus given by a 128x128 matrix L over GF(2), where L is a block 
diagonal matrix with blocks given by this circulant 8x8 matrix. 

Sliif tRows and MixColumns o p e r a t i o n s 

The Shif tRows operation is based on the rotation of rows of the state 
array. The rotation of a row by one position is represented by the 4 x 4 
permutation matrix R over F , where 

/ 0 1 0 0 \ 
0 0 1 0 
0 0 0 1 • 

\ 1 0 0 0 / 

R = 

If we change the basis of the state space so that the state array is rep
resented by the column vector 

(cSo, 54, iSg, <Si2, i5i, iS5, iSg, <Si3, 52, SQ, ISIQ, ISH, 1S3, ^7, 5 i i , iSis) , 

then the action of the Shif tRows operation is represented by the 16x16 
block diagonal matrix 

/ / 0 0 0 
0 .R 0 0 
0 0 i?2 0 

V 0 0 0 R^ 

\ 

By re-ordering the rows and columns of this matrix, we can obtain a 
16x16 matrix R over F that represents the Shif tRows operation with 
respect to the standard state array ordering by column. 
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The MixColumns operation is typically described in terms of the 4 x 4 
MDS matrix over F given in Section 3.1. However, there is a basis 
of F ' ' such that the transformation given by the MDS matrix can be 
represented using the matrix R. Thus there is a basis of ¥^^ such that 
the MixColumns operation is given by the block diagonal matrix 

/ i? 0 0 0 \ 
0 i? 0 0 
0 0 i? 0 

V 0 0 0 i? y 

The 16x16 matrix C that represents the MixColumns operation with re
spect to the standard state array ordering has the same algebraic prop
erties as this matrix. 

The combined action of Shif tRows followed by MixColumns is rep
resented by the 16x16 matrix CR over F . This represents the linear 
diffusion provided by the wide trail strategy. Since both C and R are 
fundamentally based on R, we can determine the simple algebraic prop
erties of these constituent operations and their combination. 

We can regard the state vector cither as a vector over F of length 16 or 
as a vector over GF(2) of length 128. In the latter case, the Shif tRows 
and MixColumns operations arc given by 128x128 matrices R and C 
respectively. Multiplication by an element of F is a linear transformation 
of F considered as the vector space GF(2)®, and so multiplication is 
described by an 8 x 8 matrix over GF(2). Thus the matrices R and C 
are given by the block matrices in which the entries 1, 6 and 6 + 1 oi C 
and R arc replaced by the 8 x 8 matrices / , TQ and T^+i (Example 2.65). 
The linear diffusion required by the wide trail strategy is therefore given 
by the 128x128 matrix CR over GF(2). The algebraic properties of R 
and C, and hence CR, are directly given by those of R and C. 

A u g m e n t e d linear diffusion 

We have seen that the final two parts of the SubBytes operation, namely 
the GF(2)-linear mapping and the addition of the S-box constant, form 
an affine operation over GF(2). Furthermore, the diffxision operations of 
the AES on bytes of the state space, namely Shif tRows and MixColumns, 
are also linear operations over GF(2). It is thus reasonable to consider 
an augmented linear diffusion for the AES, consisting of combining the 
affine transformation within the SubBytes operation with the Shif tRows 
and MixColumns operations. By combining these operations into one, we 
derive a very natural mathematical division of the AES round function. 
The first part consists of the simultaneous inversion of all components 
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of the state. The second part is affine over GF(2) and consists of the 
composition of all other operations in the round. 

The division of the round function of a block cipher into a nonlinear 
part and an affine part is somewhat arbitrary, as there arc clearly many 
ways in which such a division could be made. An algorithm for finding 
such decompositions is given in [12]. However, given that this nonlin
ear part is particularly simple, the division of the AES round fimction 
into a nonlinear inversion part and an affine part consisting of all other 
operations is strikingly clear. 

We now give an expression for this affine second part of the AES round 
function, that is the round function without the inversion operation, We 
consider vectors of length 128 over GF(2), and we suppose that x is the 
output of the inversion within the round, that k^ is the round key, and 
that 63 is the vector of repeated S-box constants. The affine part of the 
AES round mapping is then given by 

x i - ^ C i ? ( L x + 6 3 ) + k . i , 

where C, R, and L are the matrices discussed above. However, since 
C(63) = R{63) = 63 , this afBne mapping is given by 

X ^-^ CRLyi + ki + 63 . 

The linear transformation of this affine mapping is thus given by the 
128x128 matrix M = CRL over GF(2), and this matrix is given in 
Appendix B. The matrix M is particularly simple and is only shghtly 
more complicated than the linear diffusion matrix CR identified by the 
wide trail strategy. We therefore consider the augmented linear diffusion 
given by the matrix M in our subsequent analysis of the AES. This allows 
us to express the round function of the AES succinctly. 

We now give such an expression for the AES round function. We 
suppose that w and x are vectors over GF(2) of length 128, and that w 
is the input and x the output of the inversion operation. We then have 

x = (x-o,...,a:;i5)^ = [wl^^^',... ,iu\^^'j = w^"^', 

where w^^^^ denotes component-wise inversion. Furthermore, we can 
define a revised key schedule for the AES with round keys given by 
k* = kj + 63 {i > 0) with kg = ko. A round of the AES is then given by 

w K ^ M w ( - ^ ) + k * . 

We can therefore consider an equivalent definition of the AES round 
function in which an S-box consists solely of the inversion operation. 
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Minimal Polynomial 
Order 
Dimension: Fixed Subspace 
Dimension: Order 2 Subspace 
Dimension: Order 4 Subspace 
Dimension: Order 8 Subspace 
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C 

x^ + l 
4 
32 
64 
128 
128 

R 

x^ + l 
4 

64 
96 
128 
128 

CR. 

a;'* + l 
8 
16 
32 
64 
128 

L 

{x+ir 
4 

48 
96 
128 
128 

M 

(x + l)'" 
16 
16 
30 
58 
96 

Figure 4-1- Some properties of matrices used in the augmented diffusion of the AES. 
The order i subspace for the matrix T is {vjT'v = v}. 

Thus, while a design criterion for the S-box is that there be no "fixed 
points" [37], the equivalent S-box in the algebraically simpler description 
of the AES has two fixed points (00 and 01). The diffusion in the AES 
round is now given by the augmented linear diffusion, and a round of 
the AES consists solely of the following two simple algebraic operations. 

• A component-wise inversion over the field F . 

• An affine transformation of a vector space over GF(2). 

P r o p e r t i e s of the a u g m e n t e d linear diffusion 

We now discuss some of the basic properties of the augmented linear 
diffusion matrix M = CRL and its component matrices. We summarise 
these properties, in Figure 4.1. In particular, the minimal polynomial 
mlTiM{x) of M is given by 

minM(a;) = (a; -I- 1) 15 

so minM"(a;) divides {x + 1) 16 ..16 + 1. Thus M has order 16. This 
means that any 128-bit input to the augmented hncar diffusion of the 
AES will be mapped to itself after at most 16 repeated applications of 
the augmented linear diffusion. Such a small order is notable because 
it suggests that the augmented linear diffusion possesses considerable 
structure, even though it includes two of the three parts of the highly 
nonlinear S-box. Furthermore, the afHne transformation A]^ of the aug
mented diffusion given by x ^^ M x + k has order 16 since 

A 16- = iV/i'^x-h (Mi5 + Mi4 + 

= / x + ( M + / ) i5k = x. 
-h M + /) k 

Further properties of the augmented linear diffusion matrix can be 
found by applying a change of basis transformation to the matrix M. 
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In particular, the augmented linear diffusion can be represented by the 
simple matrix P^^MP given in Appendix B. The simple structure of 
the augmented linear diffusion of the AES revealed by P'^MP gives 15 
subspaces Vi,..., Vis C GF(2)i28 ^^^]^ ĵĵ ^ .̂ 

These subspaces Vi,...yVi5 have dimensions 16, 14, 14, 14, 10, 10, 10, 
8, 8, 6, 4, 4, 4, 4, and 2, respectively. They have the property that 
if Vi 6 Vi, then M v , = v , + Vj_i for some Vj_i G ^ j - i (i > 1) with 
M v i = Vi. Furthermore the subspaces Vj = Vi(B .. .(BVJ (j = 1 , . . . , 15) 
arc M-invariant, that is MV- = V-. 

Such properties of the augmented linear diffusion of the AES suggest 
several ideas for analysis of the AES, some of which are mentioned be
low. The techniques are based on those given in [84, 86] and require 
some understanding of the structure and construction of these invariant 
subspaces [88]. 

We have seen that the 16-dimensional subspace Vi = V( is fixed by 
the matrix M. Thus there are 2-"̂*̂  vectors fixed by the augmented diffu
sion. Furthermore suppose that x and x ' are two vectors such that the 
difference x -f x ' e Vi, then 

M x + M x ' = M ( x + x') = X + x', 

and so the augmented diffusion of the AES also fixes 2^^ differences. In 
particular, there exist vectors that are fixed by M and are nonzero for 
only 12 of the 16 bytes of the state. Thus the use of such a difference 
in an analysis of the AES would involve only 12 active S-boxes in each 
round. One such vector over GF(2) given in hexadecimal notation is 

(55336600 33550066 55336600 33550066)^. 

Such an analysis of the augmented diffusion matrix M extends to 
parity checks. In this case, a parity check is a row vector e^ of length 
128 over GF(2), and the parity check value of a vector x is e^x e GF(2). 
Furthermore, there are also 2^^ row vectors e that are fixed by the 
augmented diffusion matrix M , that is e^M = e^. For such a parity 
check e^, any parity check value is fixed by the augmented diffusion as 

e'^'Mx = e'̂ '̂x. 

Similarly, any parity check value of a difference is also fixed by the 
augmented diffusion as 

e ^ ( M x + Mx') = e ^ M ( x + x') = e^(x + x ' ) . 
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However, there arc such fixed parity check row vectors that only have 12 
nonzero bytes, and therefore involve only 12 active S-boxes. One such 
parity check row vector over GF(2) given in hexadecimal notation is 

(00999900 CC5555CC 00999900 CC5555CC). 

There are many further ways in which such parity checks can be used 
in the analysis of the AES. For example, we have seen above that the 
126-dimensional subspacc V{^ is M-invariant. Furthermore, the lower 
right 2 x 2 submatrix of P^^MP (Appendix B) shows that any coset of 
V]'4 is mapped to itself by M. Thus we have identified a partition of 
either the state space or the set of differences into four subsets in which 
this partition is preserved by the augmented linear diffusion. These four 
cosets are defined by the two parity check row vectors over GF(2) given 
in hexadecimal notation by 

(AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA), 
(5AF05AF0 5AF05AF0 5AF05AF0 5AF05AF0). 

The potential of such observations [88] has not been explored to any 
great extent. In [89] some of this work was extended to similar prop
erties over F rather than GF(2), and some high probabifity differential 
effects under related sequences of round keys were noted. While these 
observations do not apply to the AES, they demonstrate that high prob
ability differential effects can be observed in AES-like ciphers satisfying 
the demands of the wide trail strategy [37, 39]. Thus further analysis of 
some of the issues raised in [87-89] may yet be of interest in the analysis 
of the AES. 

2. Algebraic Representations 
There can be many equivalent ways to describe a cryptosystcm. Al

though standardisation requires the same convention to be used for da ta 
representation, alternative representations of the cipher operations can 
be of much interest. Some representations might be helpful to implemen-
tors, perhaps as a way of improving performance or providing additional 
protection against side-channel attacks. Other representations may be 
useful to the cryptanalyst in the hope that they provide further insights 
to the properties of the cipher. 

Alternative representations of block ciphers are constructed by defin
ing mappings. Suppose we have an original block cipher £ with a state 
space X and key space /C, and a new block cipher £' with state space Pd' 
and key space K.'. We can now define a plaintext mapping a, a cipher-
text mapping 7, and a key mapping K between the respective spaces of 
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keIC 

X 

X 

a{X) C X' 

E' K{k) e K.' 

-f{X) C X' 

Figure 4-^- £''• an alternative representation of the cipher £. 

the two block ciphers such that 

a,^: X ^ X' and K: /C —> AC'. 

We say that the block cipher £' is an alternative representation of the 
block cipher £ if, for s.\\ x & X and k e K, 

£'.ikM^)) i{£k{x)). 

An alternative representation is best illustrated by the commuting 
diagram of Figure 4.2. If the mapping functions are injcctivc, then we 
can replicate encryption by £ using the cipher £'. We map the original 
plaintext to the new plaintext with a and we map the original key to 
the new key with K. We then encrypt the new plaintext with £' under 
the new key to obtain a new ciphertext. We can recover the original 
ciphertext from the new ciphertext. The recovered ciphertext is what 
would have been obtained if we had encrypted directly with the original 
block cipher £. In this case, we say that the cipher £ is embedded in the 
cipher £'. 

Cryptanalytic techniques for block ciphers can sometimes be described 
by using such commuting diagrams and their generalisations. For exam
ple, such a technique arises when a block cipher has linear factors or 
linear structures [16, 45, 106] and such properties have the potential 
to reduce the cost of key search by "factoring out" algebraically-related 
encryptions. 

Alternative representations where the original and new block ciphers 
are identical {X' = X, IC' — K, and £' = £) have been termed self-dual 
in [7]. The property of a cipher being self-dual under non-trivial affine 
mappings is essentially equivalent to the property of a cipher possessing 
linear factors or structures. 
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E X A M P L E 4.1 The complementation property of the DES gives a non-
trivial self-dual cipher or, equivalently, a hnear structure. Let 1^ and Ifc 
denote the vectors ( 1 , . . . , 1)^ of lengths 64 and 56 respectively. Then 
take (J and 7 to be the mapping x 1-^ x + 1^, and K to be the mapping 
k ^> k + lk- These are known as the complementation mappings and give 
a non-trivial self-dual cipher for the DES. Alternatively, we can obtain 
a linear structure by setting 

X' = -rr-T and JC' 
(1.) (Ife) 

to be quotient spaces with respective natural mappings a = 7 and K. The 
equivalent commuting diagram to that of Figure 4.2 can be completed 
by setting 

^K(fc)('^(^)) = ^fe+ifc(a; + la;) = Skix) + Ix- • 

E X A M P L E 4.2 The AES round function is self-dual. We define (̂  to be 
the permutation of the state or key array bytes defined by 

V = ('5oo<So3iSo2'5oi)(«Slo<Sl3(Sl2iSii)(iS20'523<522'52l)(<S30iS33iS32iS3i). 

We deiine the three mappings p, 7, and K to be the mappings of the 
state and key spaces induced by one of the permutations if, fP', or tf^ of 
the array of bytes. If we let £ denote the AES round function, then 

^«(fc)(c^(a;)) = l{£k{x)), 

so the AES round function is self-dual [73]. However, this property does 
not extend to the full AES because of the action of the key schedule. D 

Such a framework for alternative representations can be extended 
stochastically. The standard statistical techniques of block cipher crypt-
analysis, such as differential and hnear cryptanalysis [10, 78], can be 
described using this simple generalisation. We simply view the com
muting diagram as holding statistically and require that the function S' 
completes the commuting diagram with a suitable probability [86, 117]. 

R e p r e s e n t a t i o n s of the A E S 

A number of alternative representations have been proposed for the AES. 
They exploit the structure of the cipher and are mostly constructed by 
defining homomorphisms of the AES state and key spaces. 

The state space of the AES is composed of 16 bytes, where each byte 
is considered as an element of the field F . The set F *̂̂  has both a vector 
space structure and a ring structure with component-wise multiplication. 
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Wc can therefore consider the state space of the AES with this natural 
algebraic structure as an F-algebra (Section 2.3), which wc call the AES 
state space algebra [21]. 

The algebraic transformations of the state space algebra, that is trans
formations which preserve most of the structure of the algebra, are nec
essarily based on either a linear transformation or on a ring-theoretic 
transformation of the state space. As the AES round transformations 
are all algebraic operations, there arc many opportunities to construct 
alternative representations. If an alternative representation is based on 
algebra isomorphisms, then we term the alternative representation an 
isomorphic cipher. 

3. Big Encryption System (BES) 
One representation of the AES is derived by embedding the AES in 

a larger cipher called the Big Encryption System [BES) [89]. The BES 
is defined as a way to replicate the action of the AES using simple 
algebraic operations over F . The BES operates on 128-byte blocks with 
128-byte keys and has a very simple algebraic structure. One round of 
the BES consists of inversion of each of these 128 bytes and an affine 
transformation with respect to a vector space of dimension 128 over F. 

E m b e d d i n g m a p p i n g of t h e A E S in the B E S 

We denote the state space algebras of the AES by A = F *̂̂  and of the 
BES by B = F^^^. The mapping to embed the AES in the BES is based 
on the vector conjugate mapping (/) : F ^ F*, which maps an element 
of F to a vector of its eight conjugates. This mapping (f) is an injective 
ring homomorphism given by 

oO o l o2 o3 o4 o5 <2Q <y' 

a ,0 , a , a ,a , a , a , a 

This definition can be extended in the obvious way to an embedding 
function i?i : A -^ B defined by 

( a o , . . . , aiz)^ i-> ((^(ao), . . . , ^ ( a i s ) )^ , 

which is also an injective ring homomorphism. We can therefore use cj) 
to embed an element of the AES state space A into the BES state space 
B , and we define 

B A = </.(A) c B 

to be the embedded image of the AES state space. We note that B A 
is a subring of B but not a subalgcbra. However, B A contains a basis 
for B as a vector space, and so B is the closure of B A [21]. Since the 
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B A 

AES BES Hk) 

B / 

Figure 4-3. The relationship between the AES and the BES. 

inverse mapping (p ^ : B A —> A is well-defined, the BES gives rise to 
the commuting diagram of Figure 4.3. 

Structure of t h e B E S 

A full description of the BES is given in [89]. The inversion, ShiftRows, 
MixColumns, and AddRoundKey operations in the AES with state space 
A are replaced by the obvious corresponding operations for the BES 
with state space B . The addition of the S-box constant 63 in the AES 
is replaced by the obvious corresponding operation for the BES with 
state space B , but then incorporated into a revised round key. The 
remaining operation yet unaccounted for is tiie GF(2)-linear mapping in 
the SubBytes S-box. 

The GF(2)-linear mapping is defined by considering the Rijndael field 
F as a vector space of dimension 8 over GF(2) [95]. This is implicitly 
accomphshed in the AES by the natural mapping ^.-F —> GF(2)^. The 
componentwise AES GF(2)-lincar operation F —> F is then defined by 
a h-» V'-nC(V'(a))), where ^ : GF(2)8 ^ GF(2)^ is the linear transfor
mation given in Section 3.2. It is the need for the maps tp and tp"^ 
which complicates the algebraic analysis of the AES. The GF(2)-linear 
mapping can be realised by a linearised polynomial over F (Section 2.4). 
The GF(2)-linear mapping F -^ F is therefore given by 

05a^ 09a^ -hF9a^' 
93 94 

Ola^ B5o^ 8Fa^ 

This means that the GF(2)-lincar operation in the AES S-box can be 
defined within the BES by an 8 x 8 matrix over F . This matrix repli
cates the AES action of the GF(2)-linear mapping on the first byte of a 
vector conjugate set and ensures that the property of vector conjugacy 
is preserved on the remaining bytes. 
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R o u n d funct ion of the B E S 

The round function of tlic BES lias tiic same simple form as that of 
the AES, consisting of inversion followed by an affinc transformation. 
Suppose that the state at the beginning of the round of the BES is 
b e B and that the BES round key is (kg) ; e B , then the BES round 
function is given by 

b ^ M s b ^ - i ) + ikB)i, 

where Mg is a 128x128 matrix over F performing linear diffusion within 
the BES [89], The BES diffusion matrix MB and the AES diffusion ma
trix M arc closely related and share algebraic properties. Mg is sparse 
with minimal polynomial {x + 1)^^ and related invariant subspaccs. Fur
thermore, the round function of the AES can be expressed in terms of 
the BES. If the state at the start of an AES round is ŵ  e A and the 
round Icey is k* G A, then the AES round function is given by 

Mw(-i) + k* = cj)-^ (MB (H^)^^^A + 4>(M. 

Thus the AES can easily be defined in terms of the BES. 
This definition of the AES round function in terms of the BES can 

allow certain algebraic properties of the AES to be seen directly. For 
example, the component output functions of the inversion operation are 
related by Unear transformations, which gives various results about the 
AES S-box and AES round function [53, 120]. 

T h e A E S e m b e d d i n g in the B E S 

The effect of the embedding mapping 0 ; A —̂  B on the AES encryption 
function is to induce an embedded encryption function /^ : B ^ -^ B ^ . 
This function can be naturally extended to a function / ^ : B ~> B 
and so the BES can be naturally considered as the closure of the vector 
conjugate embedding of the AES [21]. 

Since the BES can be expressed using simple algebraic operations 
over a single field F , this yields one particularly useful insight into the 
cipher. Using the BES we are able to obtain a multivariate quadratic 
equation system over GF(2^) that describes an AES encryption. As we 
see in Chapter 5, this system is sparser and simpler than the system 
obtained directly from the AES [89]. The generation and possible solu
tion of such multivariate equation systems for the AES is the subject of 
Chapters 5 and 6. 
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4. Other Representations of the AES 
We now consider some other representations of the AES [7, 8, 105] 

which have been termed dual ciphers. We classify these representations 
by the properties of their representation mappings. 

I somorphic c iphers 

Many of the dual ciphers [7, 8, 105] are alternative AES representations 
where the mappings of state and key spaces are algebra isomorphisms 
of the AES state space algebra. The resultant ciphers are therefore 
isomorphic to the AES. 

The finite field GF(2^) can be constructed as an extension field of 
any of its subfields. Isomorphic representations of GF(2^) can thus be 
constructed from the chain of subfields 

GF(2) c GF (2^) c GF (2") c GF (2*̂ ) . 

Each irreducible polynomial of degree d in GF(2")[a;] can be used to 
construct a finite extension of degree d of GF(2") isomorphic to GF(2"' ') 
(Section 2.4). 

E X A M P L E 4.3 The polynomial a;''+ a; + 1 is irreducible in GF(2)[a;] and 
we denote one of its roots by p. Thus we have 

The polynomial y'^ +y + p'^ is irreducible in K[y]. If we denote a root of 
y'^ + y + p^ hy (^, then we have 

K(C) = (GF(2)(p)) ( 0 - , , _f ^^i 3, = GF(2«). 

We can then represent any element of 1K(C) by aiC + ao for some aoi Oi S 
K. As ao and ai can be naturally represented by a hexadecimal charac
ter, we can represent such an element aiC + ao as the pair of hexadecimal 
characters (a i ,ao) . The element pQ £ 1K(C) satisfies 

{pQf + (PC)' + (K)' + (K) + 1 = 0, 

so there is a field isomorphism between the Rijndael field F = GF(2)(0), 
where 9 is the Rijndael root, and (GY{2){p)) {(,) given hy 0 ^^ pC,. In 
hexadecimal representation 02 i—> (2,0). Another example is given by 
05 1-̂  (4, 7) as 

e^ + l ^ ipC? + l = pHC+P^) + i = p\ + ip' + l) = p\ + ip^+p+l). D 
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Degree 

2 
4 
8 

Subfield 
GF(2) GF(2^) GF(2*) 

1 6 120 
3 60 -

30 - -

Figure 4-4- The number of irreducible polynomials over subfields of GF(2*). 

Different representations of GF(2^) can be constructed using irre
ducible polynomials of the appropriate degree in the univariate poly
nomial rings over subfields of GF(2^) [7, 8, 105]. The numbers of 
such irreducible polynomials arc given in Figure 4.4. In total there are 
30 -h (1 • 60) + (3 • 120) -F (1 • 6 • 120) = 1170 different isomorphic rep
resentations of the Rijndael field F based on subfields. These different 
representations define 1170 ciphers isomorphic to the AES. 

The Frobenius automorphism z i—*• 2^ of F can be used to obtain 
further isomorphic ciphers. This field automorphism can be extended in 
the obvious way to give an algebra isomorphism T : F̂ *̂  —* F̂ *̂  of the 
AES state space. For any function / : F *̂̂  —> F^'' used by the AES, we 
can define a function /(^^ : F^^ —> F'̂ '̂  by a; H^ T ( / ( T ^ ^ ( X ) ) ) . We can 

then replace / by / ' ^ ' and the key k by r(fc) to obtain a new cipher £^'^'. 
This new cipher is an alternative representation of the AES and satisfies 

4(i)(r(^)) = r{Sk{x)). 

This representation £^-^^ is an isomorphic cipher and has been termed 
square dual [7, 8]. There are eight Frobenius automorphisms of F . If 
these Frobenius mappings are combined with subfield mappings, wc can 
then construct 9360 ciphers isomorphic to the AES. 

These alternative representations of the AES are based on field iso
morphisms of F . Thus it seems unlikely that they are of cryptanalytic 
interest. However, such alternative representations have been proposed 
to improve the efficiency of hardware implementations, most particularly 
in the SubBytes transformation [39]. 

Regular representat ions 

The regular representation is a standard and powerful mathematical 
technique for studying an algebra [23]. Regular representations of the 
AES state space algebra are discussed in [21]. 

A representation of an n-dimensional F-algcbra A is an algebra ho-
momorphism from ^ to a subalgebra of the matrix algebra A4((F) (Ex
ample 2.56). One standard representation is the regular representation. 
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This is the algebra homomorphism v : A ~^ M.n{K) that maps a £ A 
to the matrix corresponding to the linear transformation z ^^ az, where 
z is a vector over F of length n. 

E X A M P L E 4.4 The complex numbers C form a 2-dimcnsional K-algcbra, 
The complex number x + iy can be identified with its regular represen
tation as a matrix, which is given by 

iy{x + iy) X y 
-y X 

The set of all such matrices forms a 2-dimcnsional algebra over the real 
numbers and can be identified with the complex numbers C D 

E X A M P L E 4.5 The Rijndaol field F is an 8-dimensional GF(2)-algebra. 
The regular representation of a £ F is the 8 x 8 matrix T^ of Exam
ple 2.65. The set of all such matrices {Ta\a e F } forms an 8-dimensional 
subalgebra of A^8(GF(2)). The regular representation of the Rijndael 
field F as a GF(2)-algcbra is this subalgebra. D 

The AES state space can be considered as a GF(2)-algebra or as an 
F-algebra. Example 4.5 shows that the regular representation of the 
AES state space as a GF(2)-algcbra is a set of block diagonal matrices 
forming a subalgebra of A^i28(GF(2)). This regular representation is 
given by the mapping 

/ ao \ ao 
ai 

( Tao 
0 

0 0 \ 
0 

where {aQ,ai,... ,015)"^ is interpreted as a vector over GF(2) of length 
128. The AES encryption process can then be defined in terms of stan
dard matrix operations. 

• Inversion. For the block diagonal matrix A, this is the mapping 
A Ĥ  A^~~^' = A'^^'^. This is matrix inversion if A is invertible. 

• A u g m e n t e d linear diffusion. For the block diagonal matrix A, 
there exist block diagonal matrices Dt and permutation matrices Pi 
(0 < i < 31) such that this linear transformation can be defined by 

31 

A . - > ^ A P . > 1 P / 
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• Round key addition. For the block diagonal matrix A and round 
key matrix K, this is the mapping A >—> A + K. 

The AES state space is also an F-algebra, with regular representation 
given by the algebra homomorphism F^^ —* A^i6(F) defined by 

Xl 

V a;i5 J 

( XQ 

0 
0 

Xl 

\ 

\ 0 0 X\h ] 

Thus the regular representation of the AES state space F^^ is Di6(F), 
the F-algebra of 16x16 diagonal matrices. Similarly, the matrix algebra 
Z^i28(F) of 128x128 diagonal matrices is the regular representation of 
the BES state space F^^*. This gives an embedding of an element of the 
AES subset of the BES defined by 

2 
0 Xn 

„20 

2^ 

( xt 0 

\x{^ j 

2^ 

0 \ 
0 

0 
0 

\̂  0 0 0 0 
ns / 

The regular representation of the AES subset of the BES is the sub-
ring of diagonal matrices where the octets form sets of conjugates. The 
BES encryption process, and hence the AES encryption process, can be 
defined in terms of the diagonal matrix _B of a BES state space vector. 

• Inversion. B i-> B'^~^'^ = B^^'^. 

• Linear Diffusion. B i-^ "^i-oDiPiBPlf, where Di are diagonal 
matrices and P; are permutation matrices. 

• Subkey Addition. B i~i B + K, where K is the regular represen
tation of the round key. 

Logarithmic representations 

The AES is specified using a polynomial representation for the elements 
of F. However we can also represent an element of F as an element of 
^255 by using the discrete logarithm (Section 2.4). We can thus give 



Algebraic Properties of the AES 63 

the logarithm representation of an clement of the AES state space as an 
element of the set (Z255) . Alternative representations based on the 
logarithmic representation of F are termed log dual ciphers in [7]. There 
are 128 primitive elements in F giving 128 different log dual ciphers to 
the AES. Full details of how to specify a logarithm representation of the 
AES are given in [7]. 

A multiplicative operation is easily formulated in the logarithm rep
resentation, and an additive operation can be defined in terms of the 
Zech logarithm (Section 2.4). We can directly represent an element of 
F as an element of Z255 using the Zcch logarithm and this gives a Zech 
logarithm representation of the AES state space as an element of the 
set (Z255) . This could lead to a more succinct description of the AES 
than the conventional logarithm representation. 

Ident i ty reducible representat ions 

The CES [82] is an alternative representation of the AES. However, 
representations such as the CES have a property that has been termed 
identity reducible and do not appear to provide any new perspectives on 
the AES [21]. 

5. Group Theoretic Propert ies 
Fundamentally, a block cipher provides a succinct description for an 

indexed set of permutations on the state space. Consequently we might 
try and gain insight into the structure of a block cipher by considering 
block cipher transformations as elements of some permutation group. 
Similarly, the constituent round functions of an iterated block cipher 
also form sets of permutations and may be analysed from the same 
perspective. The main theme of this section is to consider an analysis of 
the AES encryption and round function transformations as permutations 
acting on the AES state space. 

I tera ted block c iphers 

Suppose a block cipher has a state space X and a key space /C. For 
a given key fc G /C, encryption under the block cipher is a permutation 
Ek : X ^ X. The set £ = {ek\k G AC} of all possible encryptions of 
the block cipher is a subset of Sx, the group of all permutations of the 
state space. The group Q = (£fc|/c G /C) generated by the set of cipher 
permutations is known as the group generated by the cipher, li Q = £, 
tha t is the set of permutations {sfej/c G /C} forms a group, then wc say 
that the cipher is a group. As 5 is a finite group, the cipher is a group if 
and only if the set £ is closed under the operation of composition. For 
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such a cipher, multiple encryption offers no extra security over single 
encryption. 

More generally, certain properties of the group Q generated by a cipher 
arc of interest cryptographically [60] and attacks have been proposed 
against ciphers that do not satisfy some of these properties [65, 101]. 
However good group theoretic properties are not sufficient to guarantee 
a strong cipher [85]. 

Computing the group Q generated by a block cipher is often difficult. 
Let Wfc. denote the round function of the cipher under the subkey ki G /Cs, 
where /Cj is the space of round subkeys. The round functions v^^ tha t 
make up an encryption ek are also permutations of the state space X, 
and it is often easier to calculate the various groups generated by these 
permutations. Suppose we have an r-round block cipher with a key 
schedule function KS : K. —> (/C,,)'', so that any key k Q. K. gives rise to r 
subkeys in Kg- The round function permutations naturally suggest the 
following three groups of relevance to the block cipher: 

71 = {vk\k e /C,,), 
V = (wfĉ  . ..Wfĉ Wfci I ki e ICs), 
Q = {vk^. ..Vk^Vk^\KS{k) = {ki,... ,kr)) ^ {ek\ke]C). 

Thus TZ is the group generated by the round functions and V is the group 
generated by an arbitrary composition of r round functions. The group 
Q generated by the cipher can also be regarded as the group generated 
by any composition of r round functions permitted by the key schedule. 
The relationship between these groups is that 5 is a subgroup of V, and 
•p is a normal subgroup oiTZ (Q < V<\TZ). Thus the group generated by 
the round functions upper bounds the group generated by the cipficr. 

E X A M P L E 4.6 Properties of the groups generated by the DES have been 
extensively researched. Initially, it was observed that the cycle structures 
of certain permutations could be used to provide a lower bound on the 
order of the group Q generated by DES [24]. Subsequently, the cycle 
structures were extensively analysed [15, 65, 83, 103, 104] and were used 
to show that j^] > 2^^, so the DES is not a group [15, 25]. 

The DES round function under any key, and hence any DES encryp
tion, is an even permutation. Furthermore, the group TZ generated by 
the round functions of the DES is the alternating group A2(ii on the 
state space of the DES, which is a large, simple, primitive and highly 
transitive group [118]. Thus the group V •H'R- generated by the compo
sition of any fixed immbor round functions is also the alternating group 
A2M. It follows that the group Q generated by the DES is a subgroup 
of the alternating group A^M, although httle more is known about its 
structure. D 
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Cycle s tructures 

We now discuss the cycle structures of the different operations in the 
AES round function when considered as permutations of the state space. 
Some related results are given in [40, 73]. 

We first consider the permutation TTy of the AES state space of size 
2128 gjypj-̂  ijy ^jjp application of the AES S-box to the byte Sij, whilst 
fixing the other fifteen bytes. The action of the SubBytes operation 
on the AES state space is given by the permutation TTOO-.-TTSS. This 
permutation is the 16-fold product of permutations with the same cycle 
structure. Thus the SubBytes operation is an even permutation of the 
AES state space. 

We now consider the Shif tRows and MixColumns operations. We saw 
in Section 4.1 that these operations could be defined in terms of the 
appUcation of the permutation matrix R to four bytes of the AES state 
space, whilst fixing the other 12 bytes, with respect to some basis. We 
denote the permutation of the AES state space given by an application 
of the permutation matrix R, with respect to the appropriate basis, to a 
row i by TT*̂ *' and to a column j by T:^'^\ The Shif tRows operation and 
MixColumns operations arc then given, respectively, by the permutations 

!•)) (7 r (2 - ) ) ' ( ^ (3 ) ) ' and (TT^'O)) (TT^D) [n^'^^) (TT^^) 

These are 6-fold and 4-fold products of permutations with the same cycle 
structure. Thus both the ShiftRows operation and the MixColumns 
operation are even permutations of the AES state space. 

We finally consider the AddRoundKeys operation. It is clear that 
the AddRoundKeys operation is the product of 2^ '̂̂  transpositions for 
a nonzero round key and the identity transformation for a zero round 
key. Thus the AddRoundKeys operation is an even permutation. 

All operations used by the AES round functions are therefore even 
permutations of the AES state space, and so we have Theorem 4.7. 

T H E O R E M 4.7 The AES round function is an even permutation. 

The cycle structures of each component of the AES round function 
can be largely deduced from Figure 4.1 and are given in Figure 4.5. 
We note that the AES S-box permutation on the 2* elements of F has 
five disjoint cycles of lengths 87, 81, 59, 27 and 2, and so is an odd 
permutation [119]. Detailed analysis of various permutations generated 
by the AES round functions gives Theorem 4.8 [119]. 

T H E O R E M 4.8 The group 7?. generated by the AES round functions is 
the alternating group >l2i28. 



66 ALGEBRAIC ASPECTS OF THE AES 

Inversion 
GF(2)-linear 
S-box constant 
ShiftRows 
MixColumns 
AddRoundKey 
(0 Round Key) 

fixed 

2l6 

248 

0 
204 

232 

0 
(2i^«) 

Number of cycles 
order 2 order 4 

2-1(2128 __2i°) 0 
2~i(29G_2''») 2-^(2'^''-2"") 

2"' 0 
2-i(29<3_204) 2""(2^^'*-2^'') 
2 - 1 ( 2 " _ 232) 2-2(2^28 _2'3'') 

2^^" 0 
(0) (0) 

Permutation 
parity 

Even 
Even 
Even 
Even 
Even 
Even 

(Even) 

Figure 4-5. The cycle structure of the different AES components. 

This means that the group V for the AES is also the alternating group. 
This impUcs that "from the algebraic point of view some thinkable weak
ness [of the AES] can be excluded" [119]. We note that the group Q gen
erated by the AES is not just a simple composition of round functions, 
since there is an initial AddRoundKey operation and no MixColumns op
eration in the final round. However the resulting round operations are 
even permutations, and so we also have Q < A2i-2ii. 

B y t e diffusion group 

Suppose that G is a group of permutations of the 16 state array bytes, 
so G < SiQ. Each clement g £ G can be used to define a permuta
tion gx G SA of the AES state space A = F^^, which we define in 
Figure 4.6. Furthermore, such mappings can be extended to give the 
mappings {gg')A, 5A + S A ' and A • gA {g,g' S G and A e F) of the AES 
state space A. These mappings are also defined in Figure 4.6. Thus any 
formal sum 

E -^95 [^s e F] 
yea 

can be used to define a mapping ( YlqeG ^!)9) °^ ^^^ AES state space 

A given by 

(iSoo, • • • , 533) Ĥ  2 J \<J ('5g(00))- ••.'59(33)) • 
yea 

The set of all such formal sums of elements of G under the obvious rules 
of addition and multiplication forms an algebra, known as the group 
algebra [23] of G over F , and is denoted by F[G]. 

We now discuss the permutations of the 16 state array bytes needed 
to define the ShiftRows operation and the MixColumns operation. Both 
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Mapping 

9A 

( S . 9 ' ) A 

S A + S A 

A-5A 

Definition 

(5oo, • 

(5oo, . 

(Soo, • 

(<Soo, • 

• . iSaa) i-> (<5g(oo), • • • , '5i ,(33)) 

- . ' S a a ) >^ {Sg(g'(00)),---,Sg(,,'(33))) 

• ,533) l—> (5,(00) + 5g'(00), • • • . 53(33) + 5g'(33)) 

• ,533) H^ (A5g(oo), • • •, A5g(33)) 

Figure 4.6, Definitions of some mappings on tiie AES state space A. 

of these operations can be defined in terms of a specific permutation of 
the 16 bytes of the state array. Thus each operation can be defined in 
terms of a single element of the group algebra F[S'i6]. The permutation 

Q = ('5l0'Sl3iSl2>Sli)(<S20>522)('521'523)(<530'531'532>533) 

is the byte permutation defined by the Shif tRows operation. Thus the 
group algebra element A = 1 • g G F[5i6] gives the mapping A A , which 
is the Shif tRows operation. Similarly, a simultaneous rotation of all the 
columns in the state array by one position defines the permutation 

>? = ('5oO<SlO'520«53o)('5oi<SinS2nS3l)(iSo2<5l2<S22i532)(>So3iSl3'523>533). 

We can then define the group algebra element F G F[Si6] by 

r = 61 • e + (0 + 1) • <r + 1 • ?2 + 1 • <̂ ^ 

where e denotes the identity element of SIQ. The MixColumns operation 
is then given by the mapping F A - The byte diffusion of the round 
function of the AES is given by the Shif tRows operation followed by 
the MixColumns operation. Thus A A = ( rA)A specifics the diffusion, 
where the group algebra element A G F[5i6] is given by 

The mixing between the bytes required by the wide trail strategy 
is therefore given by the two elements A and F of the group algebra 
F[5'i6], which depend entirely on the two permutations g and ? of Sie-
Thus if we define the subgroup H = (fi, <;) < SIQ, then the Shif tRows 
operation and the MixColumns operation are given by elements of the 
smaller group algebra F[H]. The byte diffusion within the AES required 
by the wide trail strategy can therefore be defined in terms of the group 
algebra F [ i / ] , and so we term H the byte diffusion group of the AES. 

We now consider this byte diffusion group H = (g, ?). We first note 
that both Q and c: are even permutations so H < AIQ. In order to discuss 
the diffusion group H, we define the permutation (fi = (;g(;~'^Q~^ G H, so 

^ = ('5oO<5o3'?02'5oi)(iSio<Si3<Si2iSii)(,S20'?23'522'52l)('S30'?33'532'53l). 
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The permutation i^ corresponds to a simultaneous rotation of all rows 
by one position. We further note that ip commutes with both <; and Q, 
so A(l • (/?) = (1 • (/j) A. This observation shows that 95 is a permutation of 
state array bytes that can be used to define a self-dual round function 
for the AES (Example 4.2). 

In order to describe the byte diffusion group H, we define the subgroup 
HQ = {<;)< IT and the normal subgroup N = {g, (p) <\H. Elements of the 
subgroup HQ permute the rows of the state array, whereas elements of 
the normal subgroup Â  act entirely within each row. The subgroup HQ 
is isomorphic to the cyclic group C4 with four elements, and the normal 
subgroup A'̂  is isomorphic to C4 x C4 and so has 16 elements. Further
more, wc can show that any element of H can be expressed uniquely as 
a product of an element of its normal subgroup Â  and an clement of its 
subgroup HQ. It follows that the byte diffusion group H of the AES is 
the semidirect product [23] of N by i^o and so has order 64. 

This formulation of the byte diffusion group H shows that its action on 
the state array has two distinct parts. It can be divided into the action 
of the normal subgroup A'̂  acting entirely within each row and the action 
of the subgroup HQ which permutes the rows. Such a property means 
that H is an imprimitivc group (Section 2.1) and that each row of the 
state array is a block of imprimitivity. More generally, we have shown 
that any byte diffusion generated by the linear diffusion (Shif tRows and 
MixColumns) part of the AES round function can be given by a formal 
sum of elements from a small byte diffusion group H of size 64. This 
AES byte diflPusion group H is small and structured in comparison to a 
possible byte diffusion group SIQ. 

Such analysis extends to the BES state space F^^^. A byte diflFusion 
group for the BES of size 512 is obtained, which is a subgroup of A128. 
This diffusion group is isomorphic to the direct product (Example 2.5) 
of the cyclic group with 8 elements and the AES diffusion group H. 

G e o m e t r i c propert ies 

The operations used in the AES can be viewed as geometrical trans
formations. Inversion in a finite field is a geometrical transformation 
in projective geometry, while the augmented diffusion and round key 
addition form an affinc transformation of a vector space. This leads to 
some observations about some geometric properties of the AES. These 
observations arc projective in nature and are discussed more fully in [61]. 
We briefly discussed projective spaces in Section 2.5. However, our dis
cussion below is based on the projective line F of the Rijndacl field F , 
which we define in Definition 4.9. 
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D E F I N I T I O N 4.9 Let F be the Rijndael field and F^ the vector space of 
dimension 2 over F . The projective line F of the Rijndael field is the set 
of onc-dimcnsional subspaces of the vector space F^ under the action of 
the group of invertible Unear transformations of F^. 

The points of the projective line F are aU the one-dimensional sub-
spaces of F^, so 

F = { ( (1 ,2 ) ) | 2 e F } U { ( ( 0 , l ) ) } . 

The projective point ((0,1)) is known as the point at infinity, so wc can 
regard the projective line F as F U {oo}. The group of transformations 
on F is known as the Projective General Linear Group PGL(2 ,F ) , a 
group of order 2*^(21^ - 1). Furthermore, PGL(2 ,F ) is a sharply triply 
transitive group (Section 2.1), which means that action of an clement 
on three projective points uniquely identifies that clement. 

The potential for a geometrical approach can be seen by the analysis 
of two simple block ciphers with state spaces F and F respectively given 
in Example 4.10. 

E X A M P L E 4.10 Two ciphers C and C with state spaces F and F respec
tively are defined below (with the conventional interpretation for oo). 

Cipher 

C 

C 

State Space 
F 

F 

Round Key 

keV 

keF 

Round Function 
A : F ^ F 

Tk-F-^F 

Definition 
X 1-̂  x^~^> + k 

x^ ^ + k 

The round functions /^ and / j , of the two ciphers agree on F unless a 
0-inversion takes place. Thus the ciphers C and C transform a given 
plaintext to the same ciphertext for most plaintexts. 

We now consider the two groups 

and 
n = ( A l f c e F ) ^ Sym(F) 
11 = ( A I f c G F ) ^ PGL(2 ,F ) 

generated by the round functions for the two ciphers (Section 4.5). We 
sec that the round functions of C generate the symmetric group on F , 
so we would require many plaintext-ciphertcxt pairs to determine the 
cipher transformation. By contrast, the round functions of C generate 
PGL(2, F ) , so only three plaintcxt-ciphcrtext pairs arc needed to deter
mine the cipher transformation. 

However, C and C encrypt most plaintexts in the same way. Thus 
the overall cipher transformation of C can also be determined with three 
plaintext-ciphertext pairs with high probabiHty. D 
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The analysis given in Example 4.10 is essentially a group-theoretic 
explanation of the interpolation attack [62, 63] for this type of block 
cipher. Furthermore, Example 4.10 shows that a practically insignificant 
change to the definition of the group action being considered can yield 
a very different group. Moreover, in this case the group 7?. generated 
by the modified group action is a far more accurate indicator of the 
cipher's resistance to an algebraic attack than the group 7?. generated by 
the unmodified group action. 

Further discussion of the projective aspects of the AES is given in [1, 
27, 61]. Such analysis yields results such as the characterisation of the 
difference table used in differential cryptanalysis [10, 11] for the AES 
inversion operation [61]. Similar projective constructions for the entire 
AES state space F^^ may yet be of future interest. 



Chapter 5 

EQUATION SYSTEMS FOR THE AES 

T h e idea of b r e a k i n g a c r y p t o s y s t e m b y solving a s y s t e m of equa 

t ions is n o t new. S h a n n o n s t a t e s in his l a n d m a r k p a p e r t h a t b r e a k i n g a 

c r y p t o s y s t e m shou ld requ i re ; 

. . . as much work as solving a system of simultaneous equations in a large 
number of variables [113]. 

Even prior to this, the cryptanalysis of many historical ciphers might 
be described within such a framework. For example, some devices used 
to analyse the Enigma cipher at Blctchlcy Park, such as the bombe, 
were fundamentally devices that checked the consistency of equation 
systems [64]. 

More recently, some early at tempts to understand and cryptanalyse 
the DES were based on describing a DES encryption as an equation 
system. An early report on the DES [56] explicitly considered the task 
of writing bits of the output from the DES S-boxes as equations involving 
the six input bits to an S-box and using such expressions as a basis for 
an attack. However this report was optimistic in stating that: 

"These expressions indicate that an attempt to solve for K [key] in terms of 
P [plaintext] and C [ciphertext] may result in a simpler set of equations than 
one would expect." 

Following a more detailed analysis of the DES equation system [109], 
such at tempts to analyse the DES by solving an equation system were 
largely abandoned. However, as motivation for the analysis of an AES 
equation system, we observe that equations lying at the heart of the AES 
appear to be much simpler than those for the DES. We can illustrate this 
by considering the expression for the most significant output bit xi of 
the first DES S-box in terms of the six input bits wiW2W3W4W5We [109]. 



72 ALGEBRAIC ASPECTS OF THE AES 

This expression is given by 

Xl = W1W2WSW4WQ + WlW2'WsW5We + W1W2W3W4 + W1W2W4W5 

+ W1W2W4WQ + W1W2W5WQ + W1W3W4W5 + W1WSW4WQ 
+ W1W2W4 + W1W3W4 + W1W3W5 + W1W4W6 + W2W3W4 
+ W3W4WZ + W'SW4WQ + W4W5W6 
+ W1W4 + W1W5 + W2W3 + W3W4 
+ wi + W2 + W3 + W5 + We + 1. 

Even if we consider equations between the input bits and all of the 
output bits xia;2a;3X4 of the first DES S-box, the simplest equation wo 
obtain is the quadratic equation 

0 = W1W2 + W2W3 + UI2W4 + W2'W5 + W2We + w i^ i + W2a;i + 1030:1 
+ W4X1 + ui5a;i + WQXI + wia:2 + ui2a;2 + W3a;2 + ui4a;2 + W5a;2 
+ 11)^X2 + WiXs + VJ2XS + WsXs + W4XS + 1050:3 + WgXs + 11)1X4 
+ W3X4 + W4X4 + W5X4 + weX4 + 0:12:4 + 0:20:4 + 0:30:4 
+ wi + W2 + W3 + u;4 + W5 + W6 + a:i + 0:2 + 0:3 + 0:4 + 1. 

This complicated equation is the only quadratic equation relating the 
input and output bits of the first DES S-box. By contrast, there is a 
very simple quadratic equation over the Rijndael field F that relates the 
input and output of the AES inversion, which is the only operation in 
the AES that is not linear over GF(2). The relation over F between the 
non-zero input w and the output x of inversion is given by 

wx = 1. 

This simple fact has spurred much of the research we discuss in the 
following chapters. 

1. Basic Approaches 
The simplest equations, at least in terms of the number of variables, 

would be equations in the plaintext, ciphertext, and key, as described in 
the above quotation from [56]. In this section, we describe one generic 
method and one method specific to the AES for deriving such equations 
for a block cipher encryption. 

Interpo la t ion 

The interpolation attack is a method for the cryptanalysis of a block 
cipher whose encryption function can be expressed in terms of a uni
variate polynomial function of moderate degree [63]. Suppose we have 
such a block cipher with state space given by a finite field F and {d+ 1) 
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plaintext ciphcrtcxt pairs ipi,Ci) e F^ (i = 0 , . . . , d ) . The La erange In
terpolation Formula (Theorem 2.28) states that the unique polynomial 
function / : F —> F mapping pi to Ci is given by 

/w=E^«n 
=0 j=0 

Pj 

Pi-P] 

If the block cipher encryption can be expressed as a polynomial function 
of moderate degree d, then the encryption operation is given by the above 
polynomial function / . This function can then be used to encrypt any 
plaintext, or to decrypt any ciphertext, without knowledge of the secret 
key. The attack can be slightly modified to give an equation containing 
the key, which would then allow recovery of the secret key. 

The interpolation attack can be adapted to some block ciphers that 
use the same inversion mapping w i—> w'^"^' as used in the AES. Thus 
the interpolation attack illustrates some of the potential issues involved 
in using simple algebraic operations within an iterative cipher, even if 
these components can be used to make a block cipher that is extremely 
resistant to other typos of cryptanalysis. 

Algebraic express ions 

Some algebraic expressions for an AES encryption were given in [52]. 
We now discuss how to derive such an expression. 

The AES S-box consists of the composition of three simple algebraic 
operations, namely an inversion operation, the GF(2)-linear mapping 
and the addition of the S-box constant 63 (Section 3.2). The inversion 
operation in the S-box is given by u; t—> w^^^' = w , and we saw in 
Section 4.1 that the GF(2)-linear mapping in the S-box is given by the 
linearised polynomial function 

oO n l 92 93 94 96 96 97 

X 1-^ 05x'^ -l-Ogx"^ -fF9x' ' +25a;' ' +F^x'' +0137"^ + BSa;"̂  -H 8Fx^ . 

The final part of the S-box is the addition of the S-box constant 63. 
Thus the AES S-box is given by the polynomial function over F 

.y^255-2' I _̂  gg^ 

\ i = 0 

where the coefficients Aj are given above. 
This form for the modified AES S-box can be used to express the 

full AES encryption operation as a set of 16 polynomials over F . Each 
polynomial expresses a particular ciphertext byte as a function of the 
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plaintext and key bytes. However, these polynomials are extremely large 
and dense, and they are not practically soluble. 

We can simplify these expressions under the assumption that no 0-
inversion occurs, an event that happens with probability 0.53 (Sec
tion 3.2). We can then incorporate the S-box constant 63 as part of 
a modified key schedule to give a modified S-box consisting of just the 
inversion operation and the GF(2)-hnear mapping (Section 4.1). For a 
nonzero input w, the modified S-box is given by tiie mapping 

7 
-2* Ê ^ 

i=0 

Wo can then use this expression for the modified S-box to give an ex
pression for an AES encryption using a form of continued fractions. In 
this way, each byte of the state space after five AES rounds, iŜ - • , is 
given by 

s\l=K+y:—-—^ 
K* 

K*+Z • 
K'+T. • K*+PI 

where p, Ci and K correspond to plaintext bytes, known constants, and 
expanded key bytes respectively, with * indicating a known exponent or 
subscript [52]. 

A fully expanded expression for five rounds has around 2^^ terms of the 
typo i^fLp,, whilst the expression for the full 10-round AES encryption 
has around 2^'' terms. A type of meet-in-the middle approach, using 
the expressions for encryption for the first five rounds and decryption for 
the remaining five rounds, has been proposed to obtain equations with 
around 2^^ terms [52]. 

This technique gives rise to very compact algebraic expressions for an 
AES encryption operation. Other block ciphers do not seem to have this 
property. For example, it is estimated that an algebraic expression for 
a DES encryption would contain 2*'"' terms [52]. The AES, which has 
a much larger key and block size, nevertheless has a much smaller al
gebraic expression for encryption. While there is no algorithm that can 
practically solve these types of equations, their existence provides addi
tional motivation in the search for more amenable systems of equations 
describing an AES encryption. 

2. Equation Systems over GF(2) 
An AES equation system consists of two parts, namely an equation 

system for encryption and an equation system for the key schedule. The 
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equation system for one encryption treats the plaintext and ciphertext 
values as constants and uses state variables specific to that encryption. 
Thus different encryptions have different equation systems. The equa
tion system for the key schedule depends only on key variables, and 
therefore is common to all encryptions under the same key. 

This section gives a derivation for an equation system over GF(2) 
that describes an AES encryption. The AES key schedule uses the same 
operations as the AES encryption function, so the derivation of a cor
responding equation system is very similar. This equation system uses 
state variables given by the input and output of the inversion mapping 
at every round and, as key variables, the round keys. Thus this basic 
equation system for an AES encryption has 10 • 128 = 1280 inversion 
input and output variables, giving a total of 2560 state variables. The 
equation system for an AES encryption can be expressed in terms of 
these 2560 state variables and 11 • 128 = 1408 round key variables. 

Linear equat ions 

In Section 4.1, we show that the augmented diffusion matrix M over 
GF(2) can be used to map a vector representing the output of all 16 
AES inversions in one round to a vector representing the input to the 
AES inversions in the succeeding round. This mapping is given by x i—> 
M x + k*, where x is this inversion output vector and k* is the modified 
round key. There are similar affine mappings which relate the plaintext 
to the input of the AES inversions in the first round and the output 
of the AES inversions in the final round to the ciphertext. Thus there 
are 11 • 128 = 1408 linear equations in this system. Furthermore, these 
linear equations arc very sparse due to the round structure of the AES. 

Non l in e ar equat ions 

The nonlinear relations in the AES equation system arise from the AES 
inversion operation. In order to give a complete equation system over 
GF(2) for encryption, we need to establish nonlinear equations relating 
the components of the input and output of an AES inversion function. 

The use of multivariate quadratic equations over GF(2) to describe the 
relationship between inversion input and output was discussed in [31, 32]. 
We give a simple derivation based on linear algebra. We note however 
tha t the multivariate equations presented here differ from the ones given 
in Appendix A of [31], which consisted of multivariate quadratic equa
tions for the whole S-box operation rather than just the inversion op
eration. However, as the output of SubBytes is the result of an affine 
mapping over GF(2) of the inversion output, a simple linear substitution 
of the X variables in the equations of Appendix A gives those in [31]. 
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The defining relation over F between tiie input w and the output x 
of an AES inversion is clearly wx = 1 (unless both are zero). We now 
consider how this relationship between the field elements w and x can bo 
translated to their components when w and x are considered as vectors 
of length 8 over GF(2). 

The mapping z i—> 6z describing the multipUcation by 0 in F is given 
in the vector space GF(2)* by the Unear transformation z i-^ Tgz, where 
the matrix Tg is given in Example 2.65. This can be extended to the 
mapping z i—> wz describing the multiplication by any element w G F . 
This multiplication corresponds to the linear transformation z i—> C'ujZ, 
where C^ is a 8 x 8 matrix over GF(2) with the vector Tg^'^w in column 
i, tha t is 

C^ = ( T/w I T > I . . . \Tgw\w). 

The vector in GF(2)^ corresponding to the product wx in the field F is 
given by CwX (Appendix A). 

For the case of the AES inversion, we have 

C^x = ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ^ 

unless a O-invcrsion has taken place. In this case, wo have w — x — 0, 
and CwX is the zero vector. Thus the first seven components of Cu,a; are 
identically zero, which give us seven quadratic equations over GF(2) in 
the components of w and x. Unless a O-invcrsion takes place, the last 
component is identically 1, giving us a further equation over GF(2) with 
probability Iff- Thus the above matrix equation gives seven multivariate 
quadratic equations over GF(2) as well as another equation with high 
probability. Furthermore, we note that these are bihnear equations in 
the w and x variables. 

In addition to the equations above, we can derive further equations 
from the field equation wx = 1. We clearly have wx"^ = x and w'^x = w. 
These two equations can be expressed as the matrix equations 

{CyjS + I)x = Q and (C^S + I)w = 0, 

where S is the matrix for the squaring map (Example 2.65). These 
vectors arc also given in Appendix A. These two matrix equations give 
us 16 further multivariate quadratic equations over GF(2). These are 
biaffine equations in the w and x variables. 

We note that the equations wx"^ = xx"^ and w'^x = ww'^, which arc 
equivalent to the matrix equations 

[CyjS^ + C:,)x = 0 and {C:,S^ + C^)w = 0, 

also give rise to 16 further quadratic equations over GF(2). 
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In total we have 39 multivariate quadratic equations over GF(2) that 
relate the input and output of an AES inversion. In addition, a fur
ther equation is valid with high probability. However it may sometimes 
be advantageous just to concentrate on the simpler biUnear or biafhne 
equations, obtaining a total of 23 multivariate quadratic equations over 
GF(2), as well as another equation which holds with high probability. 

Equat ion finding 

The question arises whether we have identified all quadratic equations 
in the w and x variables for the AES inversion operation. This question 
can be answered using linear algebra. For simplicity, we consider how 
to identify all bilinear forms in the w and x variables. 

Suppose a G F*, and let â  and TLj denote the components of a and a^^ 
when considered as vectors of GF(2)^. We can then define a 6 GF(2)' ' ' ' 
to be the vector 

a = (aoao, aoai, 0,00.2,..., ajOe, 0707) . 

If wo have a bilinear equation 

7 7 

0 = ^ ^ CijWiXj 

i=0 j=0 

over GF(2) in the components of w and x of an AES inversion function, 
then let c = {cij) denote the vector of bilinear equation coefficients. For 
any a e F*, we have a-^c = 0 and we can construct a 255x64 matrix A, 
with rows given by the corresponding vectors a , such that Ac = 0. The 
coefficients c for which the above bilinear equation holds are given by 
kcr(j4), and we can find all such bilinear equations. This technique can 
be extended to biaffine and general quadratic equations by extending 
the set of monomials. 

Using this method we can show that we have identified all quadratic 
equations over GF(2) in the input and output of the AES inversion 
operation. More generally, this kernel technique can be extended to find 
polynomial equations between the input and output of cryptographic 
functions such as S-boxcs by using an appropriate matrix A. 

A sparse equat ion s y s t e m 

We are now in a position to give equation systems over GF(2) for the 
AES. The equation system described here is very sparse, in which the 
variables represent the input and output of the inversion operations and 
the round keys. We also require some auxiliary key variables in order to 
describe the key schedule. 
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Variables 

Source 
State Key 

2560 1728 

Total 

4288 

Field equations 
Linear equations 
Inversion equations 
Overall equations 

Source 
Encryption Key schedule 

2560 1728 
1408 1280 
6400 1600 
10368 4608 

Total 

4288 
2688 
8000 
14976 

Figure 5.1. The number of variables and equations in a sparse quadratic equation 
system for the AES. 

We first note that since the equation system is over GF(2), any vari
able z satisfies the field equation z^ + z = 0. In the equation system for 
an AES encryption, as well as the key variables there are 1280 inversion 
input variables w and 1280 inversion output variables x. These variables 
are used in 11 • 128 = 1408 Unear equations and they give 2560 field equa
tions. If we assume that encryption does not contain a 0-inversion, there 
are 160 inversions in an encryption with 40 quadratic equations for each 
inversion, giving 6400 quadratic equations in total. 

In the AES key schedule, there are 11-128 = 1408 round key variables. 
The inversion function is only applied to four of the sixteen round key 
bytes at every round, so the key schedule uses 40 inversions. In order 
to describe the key schedule using sparse quadratic equations, we add 
the components of the output of the key schedule inversion as variables. 
Thus there are 320 inversion output variables, giving 1728 key variables 
in total. If there arc no 0-inversions in the key schedule, we obtain 
40 • 40 = 1600 quadratic equations, 1728 field equations, and 10 • 128 = 
1280 linear equations in the key schedule. 

This sparse quadratic equation system is summarised in Figure 5.1. 
We sec that overall we obtain a system with 14976 equations in 4288 
variables. We note that any equation system for the AES is somewhat 
arbitrary, and the choice of an equation system for the AES depends 
to some extent on the intended use of the system. For example, the 
quadratic equations for the AES inversion given in [31] are more com
plicated than the ones given in Appendix A, but the associated linear 
equations are much simpler. Furthermore, we can always use linear 
equations to ehminate variables by simple substitution so as to give a 
system with fewer variables, though generally at the cost of making the 
nonlinear equations more complex. 
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Variables 

Source 
State Key 

1280 320 

Total 

1600 

Field equations 
Inversion equations 
Overall equations 

Source 
Encryption Key schedule 

1280 320 
6400 1600 
7680 1920 

Total 

1600 
8000 
9600 

Figure 5.2. The number of variables and equations in a compact quadratic equation 
system for the AES. 

A c o m p a c t equat ion s y s t e m 

We can produce a more compact equation system by using linear equa
tions in the AES system to substitute and eliminate variables. We first 
consider the linear relations in the encryption process. We let w^ and x^ 
denote the input to and the output from an AES inversion respectively, 
and we let k^ denote the round key and 63 the vector of repeated S-box 
constants. These arc considered as vectors of length 128 over GF(2). 
For plaintext p and ciphertext c, AES encryption is described by 

Wo = p + ko + 63 
Wi = Mxi-i + ki + 63 

c = M*X9 + kio + 63 
1, . . . ,9] 

where M* is the modified matrix for the final round. We therefore write 

Xi = M " i ( w i + i + k , ; + i + 6 3 ) fi = 0, 

X9 = ( M * 

(Wi+i + ki+i + 63) 

"^(k io + c + 63) , 

and eliminate the 1280 variables arising from the vectors Xj (0 < i < 9). 
Wc now consider linear relations in the key schedule. Some related 

issues are considered in [2]. Let ŝ  denote the 32-bit output vector of 
the inversion operation in the AES kev schedule. The output of the F-
function of the key schedule is given by Qsi + Qri, where Q is the 32x32 
matrix over GF(2) corresponding to the byte rotation and r^ is a round 
constant vector of length 32. The relationship between successive round 
keys is given by 

\ kf) / 

/ / 0 
/ I 
I I 

\I I 

0 
0 
I 
I 

M 0 
0 

I J 

(^. \ 

k!i\ 
j,(2) 
^i-l 

\ kE\ / 
+ 

Q(s i - i -hr i^ i ) 
Q{si..^i + r i _ i ) 
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where k̂ - denotes a vector of length 32 corresponding to a column of 
the round key array. Thus there exist a 128x 128 matrix A and a 128x32 
matrix B over GF(2) such that 

i 

ki = Aki_i + B (si_i + r i_i ) = A% + Y, A^"^B {si^j + n-j). 

j = i 

If we use the relation ko = WQ + p + 63 from the encryption, wc have 

i i 

ki = AVo + Y, A^~'^Bs,^j + Y A^-^Bvi^j + A\p + 63), 

and wc can eliminate the 128 • 11 = 1408 variables that refer to the 
vectors k^ (0 < i < 10). 

We have used the linear equations in the AES system to chminate 
1280 + 1408 = 2688 binary variables, and can now express the AES 
encryption in terms of 4288 — 2688 = 1600 variables. These variables 
consist of the 1280 input variables w from the inversion operation in the 
encryption and the 320 key variables that are the output of the inversion 
operation in the key schedule. 

This compact quadratic equation system is summarised in Figure 5.2, 
where we see that an AES encryption can be described by an equation 
system with 9600 quadratic equations in 1600 variables. Of these 9600 
quadratic equations, 1600 are field equations and 8000 arc from the 
inversion operations. We note that some of these quadratic equations 
are more complicated than others, and a sparser system can be obtained 
by considering the 4800 equations arising from the quadratic equations. 

Equat ion s y s t e m for t h e D E S 

For the purposes of comparison with the AES, we describe an equation 
system for the DES. Wc have already seen a quadratic equation for the 
first DES S-box at the beginning of this chapter. However such quadratic 
equations for a DES S-box are rare. There are only six other quadratic 
equations relating the input and output bits of a DES S-box: five for the 
fourth S-box and one for the fifth S-box [114]. Thus it is not possible 
to describe a DES encryption in terms of quadratic polynomials over 
GF(2) in the state variables. 

Wc therefore consider cubic polynomials. There are ton binary vari
ables for a DES S-box, so there are (̂ 3°) + (2°) + (\°) + (0°) = 176 mono
mials of degree at most three in these ten variables. We can find cubic 
polynomials satisfied by these ten variables using the equation finding 
kernel technique described earlier. This requires us to find the kernel 
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of a 64x176 matrix over GF(2). Such a matrix for a DES S-box has a 
kernel of dimension at least 176 — 64 = 112. We can thus fully describe 
a DES encryption using a cubic equation system in these variables, and 
the number of equations in such a system can be calculated using the 
figures given in [114]. We note that the nonlinear equations for the DES 
do not seem to possess any obvious structure, unlike those for the AES. 

3. Equation Systems over GF(2^) 
We now derive an equation system over the Rijndael field F to describe 

an AES encryption [89]. In Section 4,3 we introduced a block cipher 
called the Big Encryption System (BES) and showed that the AES could 
be represented as the BES with a restricted message space. The equation 
system over F that we give below is based on this representation. It is 
clearly much simpler than the equation system over GF(2) discussed in 
Section 4.2. 

B E S equat ion s y s t e m 

The state space of the BES is B = F^^® and the typical round function 
of the BES is given by 

h ^ MB ( b ( - i ) ) + ( k s ) , . 

where MB is the linear diffusion matrix given in Section 4.3 and k^ j is a 
BES round key. Similarly to the AES, we denote the state vectors before 
and after the inversion operation by Wj G B and x^ G B (0 < i < 9) 
respectively. The encryption of plaintext p 6 B to ciphertext c G B by 
the BES is then described by 

Wo = p + ko 
(-1) 

Xi = W) 
Wj = MBM-1 + k i 

C = M^Xg + k io , 

[i = 0 , . , 
[z = l , . . 

. ,9] 

. ,9] 

where M ^ is the modified version of matrix MB for the final round. If 
we denote the components of x^ by Xi^(^j^„i) (0 < j < 15 and 0 < m < 7), 
we obtain the following system for a BES encryption 

^0,(j,m) -• 

'^i^ij^ni) 

'^iy{j,rn) 

^{j,m) '-

- P(j,Tn) + ^0,(i,m) 

= ( M B X i _ i ) ( j ' „ ) + k^j^m) 

= ( ^ B ^ 9 ) ( i , m ) + ^10 

[f = 0 , . . 

[i = 1 , . . 
. ,9] 
. ,9] 
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Under the assumption that 0-inversions do not occur as part of the 
encryption (Section 3.2), this equation system becomes 

0 = ^0,U,m) + Pij,m.) + ko,U,m) 

0 = Xi,{j,m)Wi,{j,m) + 1 [j = 0, . . . , 9] 

0 = Wi,{j,rn) + {MBXi^l){j,rn) + hu,rn) [i = 1, . . . , 9] 

0 = C(j-m) + (-^ijXgjy,™) + fclO.OVm)-

A E S encrypt ion e m b e d d e d in the B E S 

An AES encryption can be embedded in the BES, so the above equa
tion system for a BES encryption also describes an embedded AES en
cryption. However, the embedded state variables of an AES encryption 
are elements of B A , the AES subset of B , and so possess the conju-
gacy property. This conjugacy property gives us further multivariate 
quadratic equations. Thus embedding an AES encryption in the BES 
gives the equation system over F (where m + 1 is interpreted modulo 8) 

0 = ^0,{j,m) +PU,m) + ko,{j,m.) 

0 = f^i,(j,m) + h,U,m) + {MB^i-l){j,rn) [J = 1, . . . , 9] 

0 = <^(j,rn) + fclO,(j,m) + (.^B^^s) y,"i) 
0 = a;i,(j,m)Wi,(i,m) + 1 [i = 0, . . . , 9] 

^ = ''l(j,m)+''i'ii'^^+^) [i = 0 , . . . , 9 ] 
0 = ^l(i.m^+W^,{i,rn+l) [i = 0 , . . . , 9 ] . 

Similarly, we can obtain an equation system for the AES key schedule 
embedded in the BES. This key schedule equation system has 1408 round 
key variables that are also used in the encryption equations and 320 
auxiliary variables, which are the output variables for inversion in the 
key schedule. 

The BES gives an equation system for the AES over F . Every equation 
and variable has a counterpart in the equation system over GF(2) for 
the AES (Section 5.2). Figures 5.1 and 5.2 thus describe the number 
of equations and variables for AES equation systems over F . We note 
however that the equation systems for the AES over F are extremely 
sparse compared with the corresponding equation systems over GF(2). 
In particular, every quadratic equation in the sparse system of Figure 5.1 
has only one nonlinear term. Furthermore, every quadratic equation in 
the compact system of Figure 5.2 is much simpler than the corresponding 
equation over GF(2). 

Smal l scale e x a m p l e 

We illustrate an equation system over F by considering small scale vari
ants of the AES (Section 3.3). We give the entire equation system over 
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GF(2'*) in Appendix C for the small scale variant SR(2, 2, 2,4), which has 
two rounds and a 2 x 2 state array of elements of GF(2'*). This equation 
system is analogous to the equation system over F for the AES. 

4. Grobner Basis Equation System 
We now show how to obtain a different system of polynomial equations 

over the Rijndael field F . We follow the approach of [14] and consider 
the non-linear operation in the S-box as x i-^ x'^^'^ rather than inversion 
in the Rijndael field F . Such systems contain equations that are denser 
and have higher degree than those described in Section 5.3, and have 
also been considered in [116]. However, the equation system of [14] does 
show some interesting algebraic properties of the AES encryption. 

We let Wi = {wift,..., Wĵ is) G F^^ denote the round input (0 < i < 9) 
and kj = {kifl,. .. , fc^^is) the round key (0 < z < 10). Furthermore, we 
let S(wi) = {g{wifi),... ,g{wi^i5)) denote the output of the SubBytes 
operation, where the polynomial g{z) is the interpolating polynomial for 
the S-box and is given by 

Obz'^^* + 09^^^^ + FQa^^l + 25z'^'^'^ + F4«^^^ + Olz^"^^ +B5z'-^^+ 8Fz^'^'^+ 63. 

If p and c denote tiie plaintext and ciphertext respectively, then an AES 
encryption is given by 

Wo = P_j^ko 
w , = C-R (S(w,_.i)) + ki [i = l , . . . , 9 ] 

c = R (S(w9)) + kio, 

where R and C are the 16x16 matrices over F corresponding to the 
ShiftRows and MixColumns operations (Section 4.1). 

We can now rearrange the system to obtain 

0 = Wo -I- ko + p 

0 = Siwi^i)^{CR)~\wi + ki) [i = l,...,9] 

0 = S(w9) + i ?~ ' (k io + c ) . 

This gives an equation system with 176 equations, of which 16 equations 
are linear and the other 160 equations each have total degree 254. 

We can perform a similar rearrangement with the key schedule equa
tions using the inverse S-box, though its interpolating polynomial is 
dense. The coefficients of this polynomial h{z) are given in Figure 5.3, 
where 

h{z) = OSz'^^'^ + CFz^^^ + ...+F3Z + 52. 
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Figure 5.3. Coefficients of the interpolating polynomial for the inverse S-box. 

Thus we obtain 

/ 0 \ 
0 
0 
0 
0 

1 < i < 10) 

( h{kifi + /c(j_i)_o + d^' 

Kki,i + ^(i-i),i) 

h{kifi + A;(.;_i),3) 

kiA + /t(i-i),4 

')\ ( fci-1,15 \ 
fci-1,12 

fci-1,13 
fci-1,14 

fci.O 

\ 0 / \ fcj,i5 + /C(i„i),i5 / \ /Ci.ll / 

We have thus constructed an equation system over F for an AES 
encryption in 336 variables. This equation system comprises 176 poly
nomial equations arising from the encryption operation and 160 from 
the key schedule. Of these 336 equations, 200 equations each have total 
degree 254, while the remaining 136 equations are linear. 

Wc can also consider this system as a set of polynomials in the mul
tivariate polynomial ring 

F[wo,0, • • • ,lO0,15,/C0,0,- • • ,fclO,15,Wi,o, . . . ,W9,15] 

with 336 variables over F . We consider this ring under the glex monomial 
ordering (Section 2.2), where the variables arc ordered as 

U>o,0 < ... < 1^0,15 < kofl ^ • . . -< fclO,15 -< Wl,0 ^ ... -^WQ, 15-

Under this ordering, the 160 polynomials of degree 254 derived from 
the encryption operation have wfj as their leading monomial. The 
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remaining 16 linear equations are those containing the plaintext and have 
fcoj as their leading monomial. In the key schedule, the linear equations 
have kij as their leading monomial (1 < i < 10 and 4 < j < 15), whilst 
the nonlinear equations have fc?^'' as their leading monomial (1 < i < 
10 and 0 < j < 3). Thus the leading monomials of all polynomials 
are pairwise coprime, and Theorem 5.1 now follows immediately from 
Theorem 2,80. 

T H E O R E M 5.1 The set of polynomials over GF(2^) derived from the 
AES encryption as above is a Grobner basis with respect to the glex 
monomial ordering. 

Some consequences of Theorem 5.1 are explored in Section 6.3. 



Chapter 6 

ANALYSIS OF AES EQUATION SYSTEMS 

After Rijndacl was adopted as the AES, the possibility of algebraic 
attacks led to much speculation [75, 110, 112]. This might be seen as part 
of a growing interest in the wider application of computational algebra 
to cryptography. Systems of multivariate polynomial equations have 
been proposed in asymmetric cryptology [100] and the analysis of some 
cryptosystems, most notably certain stream ciphers [29], demonstrate 
the importance of computational algebra techniques. 

Solving systems of multivariate polynomial equations is a classical 
problem in algebraic geometry and computer algebra [33, 34]. Sup
pose we have a field F and a multivariate polynomial ring F [a ; i , . . . , a;„] 
in n variables over F. Given a set of m polynomials / i , . . . , / „ in 
F[a ; i , . . . ,Xn], we might wish to find solutions to the equation system 
/ i = 0 (1 < i < m) , that is to find (o i , . . . , a„) G F " such that 

/ i ( a i , . . . , a„) = . . . = /m(a i , • • •, fln) = 0. 

This problem is equivalent to finding the affine variety associated with 
the i d e a l / = ( / i , . . . , / , „ ) < F[ xi,..., Xn] generated by the polynomials 
/l^ • • •) /m (Section 2.5). This affine variety V(/) is defined by 

V(/ ) = { ( a i , a 2 , . . . ,a„) £ F " | / ( a i , a 2 , . . . ,a„) = 0 for aU / e / } . 

A common technique to obtain the set of solutions of a polynomial 
system is to compute the reduced Grobner basis of the ideal / , particu
larly with respect to the lex monomial ordering (Section 2.2). By finding 
such a Grobner basis of / , we can obtain all solutions to an equation sys
tem in the algebraic closure of F. However, there are situations where 
the solutions of a polynomial system can be found without calculating 
the reduced Grobner basis of / . 
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The problem of solving systems of multivariate equations over a finite 
field is known to be NP-hard [54]. However we do not expect the prob
lem to be so hard on average. Furthermore, in the cases of interest in 
cryptology, the systems often have some special properties. For exam
ple, the field F is often a finite field of characteristic 2 and the solutions 
sought usually lie in F. A common technique in this case is to add the 
finite field relations x'! — Xi {1 < i < n) to the existing set of equations, 
where q is the order of F. This gives a set of m + n equations and ensures 
that all found solutions lie in F. 

Equation systems that occur in symmetric cryptology often contain 
many more equations than variables. We call this type of equation sys
tem an overdefined or overdetermined system. Overdefincd systems arc 
often easier to solve. In fact, the very existence of an overdefined mul
tivariate quadratic equation system for the AES was the basis for much 
of the early research into algebraic attacks against the cipher [31, 32]. 

Various methods have been suggested for the analysis of such equation 
systems, and there is much literature on the subject [33, 34, 66, 72]. Wo 
discuss some proposed methods of solution for such equation systems. 
We give an overview of some of the classical methods, such as Buch-
berger's algorithm for computing a Grobner basis, as well as methods 
that have been specifically proposed in the context of cryptology, such 
as the XL method. We also discuss the applicability of other methods 
designed to exploit the structure of the AES equations. 

1. Grobner Basis Methods 
Grobner basis algorithms arc well-known general purpose methods for 

solving systems of multivariate polynomial equations. Most computer 
algebra packages, such as the MAGMA, SINGULAR and MAPLE packages, 
include implementations of Grobner basis algorithms. This is often the 
default technique for computing the solution of a system of polynomial 
equations. The classical general algorithm for computing a Grobner 
basis of a polynomial ideal is Buchberger's algorithm [13]. 

Buchberger ' s a lgor i thm 

We consider the polynomial ring F[a : i , . . . , x„] with a monomial ordering. 
Suppose / < F[a ; i , . . . , x„] is an ideal of this polynomial ring with a 
basis F = { / i , . . . , fm}- We can define the S-polynomial of any pair of 
polynomials (/j , / , ) of F by 

^[h,W-[ LT(/0 J^' [ LT(/,) J^^' 
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1: Input; F = { / i , . , . , / „ } 
2: Output: Grobner Basis G = {gi,... ,g,,} for the ideal generated by F 
3: 
4: G := F 
5: repeat 
6: G' •-- G 

7: for each pair of distinct polynomials p and q in G' do 
8: Construct the 5-polynomial S{p,q) 
9: Compute the remainder r of division of S{p, q) by the polynomials in G' 

10: if r ^ 0 then 
11: G : = G U { r } 
12: end if 
13: end for 
14: until G = G' 
15: 

16: return G 

Figure 6.1. Buchberger's algorithm for computing a Grobner basis. 

with 1cm being tlic least common multiple. Tlic S'-poiynomial S{fi, fj) is 
a polynomial in the ideal / which is computed essentially by cancelling 
the leading terms of the two polynomials / j and fj. Buchberger's algo
ri thm uses ^'-polynomials and Theorem 6.1 to compute a Grobner basis 
of the ideal / . 

T H E O R E M 6.1 Let F[a ; i , . . . , Xn] be a polynomial ring with a monomial 
ordering and let I be an ideal of F [a ; i , . . . , x.„]. A basis G = {/i,..., f„i} 
for the ideal / is a Grobner basis for / if and only if every 5-polynomiaI 
S{fi, fj) of pairs of distinct polynomials fi, fj 6 G has remainder 0 upon 
division (reduction) by G. 

Buchberger's algorithm [33] is given in Figure 6.1. The algorithm 
can be modified to perform the autoreduction of the set G as the last 
step of the algorithm. This modified algorithm computes the unique 
reduced Grobner basis of the ideal / = {fi, •••, fm)- Such a reduced 
Grobner basis, especially with respect to the lex ordering, can be used 
to compute solutions of the equation system 

/ i ( a ; i , . . . , x„) = 0, . . . , fm{xi,..., Xn) = 0. 

E X A M P L E 6.2 Wc consider the polynomial ring C[a',t/] of polynomials 
in two variables over the complex numbers with the lex ordering (with 
y ~< x). Let I <\£.[x,y\ be the ideal generated by the two polynomials 

/ i = x^y - 1 and /2 = xy^ - x. 
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Wc compute the Grobner basis of this ideal / by using Buchbcrgcr's 
algorithm. We initially set G = {/i, /2} and compute the 5-polynomial 
of the two polynomials in G, so 

= y{x^y - 1) - xixi/ -x) =x'^ - y. 

We note that the leading term of S{fi, /2) is x'^, whilst LT( / i ) = x^y and 
LT(/2) = xy'^. Thus S{fi, /2) is a polynomial that cannot be reduced by 
either polynomial in G = {/i, /2}- Wc thus set / s = 5 ( / i , /2) = x^ — y 
and include / j in G to obtain G = {/i, /2, / s } . 

Wc now compute the S'-polynomial of / i and /g to obtain 

S{h,h) = ^{x^y~l)-•-^{x:'-y) 

We note that S{fi, fi) cannot be reduced by the set G = { / i , / 2 , /3} -
Wc thus set fi = S{fi,f's) = y'^ — 1 and include /4 in G to obtain 
G = { / l , / 2 , / 3 , / 4 } . 

Wc next compute 5'(/2, fs) = —a;̂  + 2/'̂ - We note that its leading term 
is —x^, which is divisible by LT(/3) = x"^. We can thus divide S{f2, h) 
by /a and then by f^ to obtain 

S{f2,h) = -x" + 2/3 = - / 3 + (ŷ ^ - y) = - h + yh-

Similarly, we have S{fi,fi) = /a , S'(/2, /4) = 0 and ^ ( / s , /4) = h-yfi-
Thus the S-polynomials of all pairs of polynomials in G are reduced to 
0 by G, and so G = {/i, /2, / s , /4} is a Grobner basis of I. 

We can now reduce the set G to obtain the reduced Grobner basis 
{x"^ — y^y^ — 1} of / , It follows that the equation system 

a;̂  — y = 0 and y^ — 1 = 0 

has the same solution set as the equation system 

X 2/ — 1 = 0 and xy — a; = 0. 

Thus we have the complete solution set {(1,1), (—1,1), (i, —1), (—i, —1)} 
in the complex numbers for the system x^y — 1 = xy^ — a; = 0. D 

Buchbcrgcr's algorithm can be thought of as a generalisation of the 
Euclidean algorithm for calculating the greatest common divisor of a 
set of univariate polynomials. The univariate polynomial ring F[a;] is a 
principal ideal domain. Thus the ideal ( / i , . . . , /m) is generated by the 
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polynomial g = g c d ( / i , . . . , /„,,) and g is just the reduced Grobner basis 
of ( / i , . . . , /m) . Tills basis is calculated by Buciibcrger's algorithm. 

Buchborgcr's algorithm can also be thought of as a generahsation 
of Gaussian reduction to nonhnear polynomials. The reduced Grobner 
basis of an ideal generated by a set of linear polynomials is a set of 
linear polynomials in echelon form. The equivalent echelon set of linear 
polynomials is thus calculated by Buchberger's algorithm. 

As presented in Figure 6.1, Buchberger's algorithm can be used di
rectly to compute the Grobner basis of a polynomial ideal. However, it 
is not particularly efficient as many of the ^-polynomials generated in 
the first step of the algorithm reduce to zero. Thus many unnecessary 
reductions arc performed, and reductions arc by far the most compu
tationally intensive part of the algorithm. A good way to improve the 
efficiency of the algorithm is to identify those pairs of polynomials whose 
S'-polynomials are known (before calculation) to reduce to zero. Such 
pairs of polynomials can be identified using Buchberger's criteria. For 
example, Buchberger's first criterion is a consequence of Theorem 6.3. 

T H E O R E M 6.3 If / i , / 2 6 F[xi,... ,Xn] are two polynomials with co-
prime leading monomials, then the S'-polynomial S '( / i , /2) reduces to 
zero with respect to { / i , / 2} . Thus Buchberger's algorithm docs not 
need to consider 5 ( / i , /2). 

We note that Theorem 2.80 follows immediately from Theorem 6.3. Such 
criteria can be used to modify and improve the efficiency of Buchberger's 
algorithm [33]. 

C o m p l e x i t y of Buchberger ' s a lgor i thm 

Even when Buchberger's criteria are incorporated, the algorithm still 
performs many unnecessary S'-polynomial reductions. Further issues, 
such as the order in which 5-polynomials arc processed or the choice of 
monomial ordering, also have a strong influence on the efficiency of the 
algorithm. For example, the grevlex ordering is often the most efficient 
monomial ordering. 

The complexity of Buchberger's algorithm is closely related to the 
total degree of the intermediate polynomials generated by the algorithm. 
There are examples where the computation of a Grobner basis of an ideal 
generated by polynomials of degree at most d involves polynomials of 
degree proportional to 2^ [33]. In fact, Buchberger's algorithm can have 
double exponential complexity. There are also examples for which the 
computation of a Grobner basis using Buchberger's algorithm requires 
an enormous amount of time and memory. However, these examples 
tend to be somewhat artificial and, in general, the running tirnc and 
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storage requirements of Buchberger's algorithm seem to be much more 
manageable for generic cases [5, 79]. 

The required sohitions for AES equation systems lie in the ground 
field. Thus we usually include field equations of the form zf+Zi = 0 when 
considering the AES equation system over GF(2) (Section 5.2). For the 
equation system for the AES over GF(2*) given by the BES, we would 
include the conjugacy equations of the form zf + Zi+\ = 0 (Section 5.3). 
For such systems, the degree of the intermediate polynomials generated 
by Buchberger's algorithm is at most the total number of variables in 
the equation system. Thus the complexity of Buchberger's algorithm 
in relation to an AES equation system is at worst single exponential. 
However, it is very unlikely that Buchberger's algorithm without further 
optimizations could be used to find the solution of the type of equation 
systems arising from established block ciphers. 

F 4 and F5 a lgor i thms 

The F4 and F5 algorithms have been proposed as alternative approaches 
for computing Grobncr bases [46, 47]. The F4 algorithm can be consid
ered an enhanced version of Buchberger's algorithm. Since the main 
computational cost of Buchberger's algorithm lies in polynomial reduc
tions, which take place sequentially, the F4 algorithm essentially replaces 
many sequential polynomial reductions with a matrix reduction. This 
can potentially give a faster algorithm than Buchberger's algorithm. The 
F5 algorithm works in similar manner, using ideas introduced in [72]. 
The F5 algorithm also includes an optimal criterion that ensures that , 
under some conditions, all the matrices generated are full-rank. 

The idea of combining Grobner basis computation with Gaussian elim
ination was first discussed in [72]. The F4 and F5 algorithms are based 
on this idea and work by performing the multivariate division algorithm 
as a matrix reduction. We illustrate this idea in Example 6.4 [115]. 

E X A M P L E 6.4 Wo consider the polynomial ring M\x, y, z] of polynomials 
in three variables over the real numbers with the lex ordering. Suppose 
we wish to reduce the following polynomials 

/ l = 3x yz — 5xy and f2 = 5x z + 3xy + 1 

by the (ordered) set of polynomials {51,52}, where 

gi = xy ~ 2z and 52 = a; 2 — 3yz. 

This is a typical operation that is required by Buchberger's algorithm. 
We would first reduce / i with respect to {gi,g2}- The reduction steps 
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required can be seen from the series of equalities 

/ l = 3x^yz 5xy 
5xy + {3x^z)gi 

= -5xy + 18yz +{3x z)gi + {6z)g2 
= 18yz'^-10z +i3x^z)gi + {6z)g2-{5)9i. 

Thus / i reduces to 18yz'^ — lOz with respect to {31,52}- We would then 
reduce /2 with respect to {gi,g2} by the steps indicated by 

/ 2 bx'^z'^ + 3xy + 1 
3xy + Ibyz^ + 1 
Ihyz^ + 6z + 1 

+(5^)52 
+ (5^)32 (3)<?i. 

Thus /2 reduces to Ihyz"^ + 6z + 1 with respect to {51,52}-
Buchberger's algorithm would perform these two reductions sequen

tially. However, the individual reduction steps for both / i and J2 only 
require reduction with respect to {x'^z)g\, 51 and (-2)52- The idea behind 
the F4 and F5 algorithms is to carry out these reduction operations as 
a matrix reduction. Thus we would construct the matrix of coefficients 

/ l 

/2 
x^z gi 

I 5 1 
z g2 

x^yz 

( 2 
0 
1 
0 

I 0 

x-'z^ 

0 
5 

- 2 
0 
1 

yz^ 

0 
0 
0 
0 

- 3 

xy 

- 5 
- 3 
0 
1 
0 

2 

0 
0 
0 

- 2 
0 

1 

0 \ 
1 
0 
0 

0 ^ 

The polynomials / i and /2 give the first two rows. The polynomials 
{x'^z)gi, g\ or (2)52, which are required to perform the reduction, give 
the remaining three rows. The reduction steps correspond to the row 
reduction of the upper two rows using the lower three rows. Such a row 
reduction would give the following matrix 

x^yz 

h( 0 
/ 2 

x^z gi 

I 91 
Z 92 

0 
1 
0 

^ 0 

x'^z'^ 

0 
0 

- 2 
0 
1 

yz^ 

18 
15 
0 
0 

" 3 

xy 

0 
0 
0 
1 
0 

z 

- 1 0 
6 
0 

- 2 
0 

1 

0 \ 
1 
0 
0 

0 / 

The first two rows of this row-reduced matrix give the reduction of / i 
and /2 with respect to {51,52}, thereby giving the same result as the 
sequential reduction of Buchborgcr given above. D 
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C o m p l e x i t y of F 4 and F5 

The F4 and F5 algorithms incrementally construct matrices similar to 
that given in Example 6.4. These matrices are used to compute the 
reduction of many polynomials simultaneously by computing the equiv
alent row-reduced matrix. This means that the F4 and F5 algorithms 
are potentially faster than Buchbcrgor's algorithm. The F5 algorithm 
has the further advantage that usually only full-rank matrices are gen
erated. This avoids further unnecessary reductions. Furthermore, the 
matrix operations used by the F4 and F5 algorithms can often be speeded 
up using specialised techniques, such as sparse matrix methods. Sim
ilarly to Buchberger's algorithm, the F4 and F5 algorithms require an 
efficient selection criterion in order to decide how many and which poly
nomials are used to construct the matrices. The efficiency of the F4 and 
F5 algorithms is highly dependent on this selection criterion. 

The F4 and F5 algorithms are currently the fastest known general 
algorithms for computing Grobner bases. However, it is not easy to im
plement these algorithms in a way that is efficient for all inputs. Further
more, the F4 and F5 algorithms often require more memory than Buch
berger's algorithm. The F4 algorithm is currently the default Grobner 
basis algorithm in the computer algebra package MAGMA [77]. Both the 
F4 and F5 algorithms have been successfully used to solve a well-known 
cryptographic challenge [49, 115]. 

As with Buchberger's algorithm, it is not an easy task to estimate 
the complexity of the F4 algorithm for generic cases. However, the F5 
algorithm can be shown to have complexity of the order of Nj^ field oper
ations, where No is the size of the largest matrix containing polynomials 
up to degree D that is constructed by the algorithm and w (2 < w < 3) 
is the exponent of matrix reduction (Definition 2.53). In general, the 
degree D of the generated polynomials is a critical parameter in the 
efficiency of both algorithms. 

The complexity of Grobner basis computations using the F5 algorithm 
is considered in [6], where upper bounds for the size of matrices gener
ated and for the algorithm complexity for generic systems of quadratic 
equations over GF(2) with m equations and n variables are given. For 
large quadratic systems with the same number of equations and vari
ables (n = m), the maximum degree D is expected to be about 0.09n 
(asymptotically). This implies that the sizes of the matrices generated 
arc exponential in the number of variables, and so the complexity of the 
F5 algorithm should also be exponential. Figure 6.2 gives some more 
general results [6]. 

The estimates of [6] are for generic systems, that is systems with no 
particular structure. By contrast, the equation systems arising in cryp-
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Condition 

m grows linearly with n 
n « m « n^ 

m grows linearly with n 

Complexity of the F5 algorithm 

Exponential in n 
Subexponential in n 

Polynomial in n 

Figure 6.2. The asymptotic complexity of the F5 algorithm for generic quadratic 
systems with m equations in n variables over GF(2). 

tology arc typically very structured. Such structure often means that 
the matrices generated by the F4 and F5 algorithms are much smaller 
than for generic cases. This was the case for the system of quadratic 
equations over GF(2) with 80 equations and variables arising from the 
(80-bit) HFE asymmetric cryptosystem [100]. The estimates of [6] for 
the generic case predict tha t the maximum degree D of polynomials re
quired to solve the HFE equation system would be 12. However, the 
maximum degree obtained in reality is 4. This implies that an HFE 
equation system is far easier to solve than a comparable generic system, 
allowing the HFE Challenge I to be broken [49]. 

The complexity of solving block cipher equation systems using the F5 
algorithm is also considered in [6]. For a generic equation system com
parable to the AES system, the maximum degree of the polynomials 
generated by the F4 and F5 algorithms is expected to be 69. Thus the 
matrix that would be generated by the F5 algorithm would have size 
about 2^'*^ This means that the complexity of the F5 algorithm in solv
ing this generic system would be of the order of 2^''^'^ field operations, 
where w is the exponent of matrix reduction (Definition 2.53). The so
lution of a generic system of this size would clearly be intractable using 
these Grobner basis algorithms. However, these estimates are for generic 
equation systems whereas the AES equation systems are highly struc
tured. State and key variables generally only occur in equations with 
the state and key variables from neighbouring rounds. Such equation 
systems are clearly different from comparable generic equation systems, 
and Grobner basis algorithms may exploit such structure and reduce the 
complexity of the computations. 

Grobner basis convers ion 

A Grobner basis is computed with respect to a specific monomial or
dering. It is often the case that a polynomial ideal has different (reduced) 
Grobner bases for different monomial orderings. However, there are cer
tain orderings that are particularly useful for obtaining the solution of a 
system of polynomial equations associated with an ideal. Such monomial 
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orderings are called elimination orderings, and the lex ordering is the 
most well-known example of an elimination ordering. The usefulness of 
the lex ordering for solving systems of polynomial equations is given by 
the following classical result from Elimination Theory [33]. 

T H E O R E M 6.5 Let / < F[a; i , . . . ,a;„] be a polynomial ideal and G be a 
Grobncr basis of / with respect to the lex ordering with Xn -•<•••-< xi. 
Then for every 0 < k < n, the set 

Gk = Gr\¥[xk+i,.-.,x„] 

is a Grobner basis of the ideal Ik~lC\ F[xfc+i, . . . , a;„]. 

Theorem 6.5 states that wc can use a Grobncr basis with respect to 
the lex ordering to essentially eliminate variables from the polynomial 
equation system. In particular, if the set of univariate polynomials in a;„ 
in the ideal / is non-empty, then this set is a principal ideal. The single 
element of the Grobncr basis G„_i = G n F[a;„] is the generator of this 
principal ideal. The associated univariate equation corresponding to this 
generator can be solved for a;.„. This process can be repeated sequentially 
so that we obtain solutions of the equation system one variable at a time. 

A Grobncr basis of an ideal / with respect to an elimination ordering 
is therefore a particularly useful tool for solving a multivariate equation 
system. However, there are other monomial orderings that might lead 
to more efficient computations. While a Grobner basis of the ideal / 
with respect to such a monomial ordering might not immediately give 
solutions to the equation system, one possible approach is to obtain a 
Grobner basis with respect to an efficient ordering and to convert this 
into another Grobncr basis with respect to an elimination ordering. 

There are algorithms that convert a Grobner basis of 7 <] F [a ; i , . . . , a;„] 
with respect to one monomial ordering into a Grobner basis of / with 
respect to another monomial ordering. If the ideal / is such that the 
quotient ring R = F [a ; i , . . . , x „ ] / I has finite dimension as a vector space 
over F, we say that / is a zero-dimensional ideal. In this case, the FGLM 
algorithm can be used to perform the conversion between two Grobncr 
bases of / with respect to different monomial orderings [48]. The FGLM 
algorithm uses techniques from linear algebra in the vector space R, and 
its complexity is given by Theorem 6.6 [14, 48]. 

T H E O R E M 6.6 Lot / < F[a; i , . . . ,a:„] be a zero-dimensional polynomial 
ideal such that the quotient ring F[a; i , . . . ,Xn]/I has finite dimension d 
as a vector space over F. The FGLM algorithm can convert a Grobncr 
basis of / with respect to one monomial ordering into a Grobner basis 
of / with respect to another monomial ordering with complexity of the 
order of nd^ field operations. 
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The FGLM algorithm is often used in conjunction with Grobncr Basis 
algorithms to compute the solution of a system of polynomial equations 
associated to a zero-dimensional polynomial ideal. We first compute 
a Grobner basis of the associated ideal / with respect to an efficient 
ordering, such as grevlex. We then use the FGLM algorithm to convert 
this Grobner basis to a Grobner basis for I with respect to an elimination 
ordering, such as lex. This new Grobner basis for the associated ideal / 
then allows us to compute the solutions to the equation system. 

We note that when / is not a zero-dimensional ideal, there are other 
methods for conversion of Grobner bases, such as the Grobner Walk [34]. 
However, the complexity of the Grobner Walls depends on the particular 
orderings used, and little is known in general about the time and space 
requirements for the algorithm. 

A Grobner basis for t h e A E S 

In Section 5.4, we show how to represent an AES encryption by a particu
lar set of polynomials over the Rijndael field F . Those formed a Grobner 
basis G with respect to a very specific monomial ordering (Theorem 5.1). 
However, this particular monomial ordering is not useful for directly ob
taining the solutions of the AES equation system. A possible approach 
is to convert this Grobner basis G to another Grobner basis G' with 
respect to the lex ordering. 

Let F[xij, krs] be the polynomial ring in the encryption and key vari
ables and / = (G) be the ideal generated by the Grobner basis G de
fined in Section 5.4. It follows from Theorem 5.1 that the quotient 
ring R = F[xij,krs\/I has dimension 254^°° w 2^^^*, so / is a zero-
dimensional ideal, and the FGLM algorithm could, in principle, be used 
to convert between Grobner bases for / . However, Theorem 6.6 indi
cates that converting this Grobner basis G into a Grobner basis G' with 
respect to the lex ordering would be infeasible using the FGLM algo
rithm, as the dimension of i? = F[xij,krs]/I is far too large. Whether 
this conversion can be performed with lower complexity than the FGLM 
algorithm suggests, or whether it is feasible to obtain the required uni
variate polynomials in the key variables, are interesting research areas. 

A further approach for using the Grobner basis for the AES system 
would be to try to recover a key byte simply by testing whether cer
tain solution polynomials arc in the ideal generated by the AES equa
tions [14]. A Grobner basis provides a powerful tool to solve the ideal 
membership problem, as a polynomial p belongs to the ideal / if and 
only if p reduces to zero with respect to any Grobner basis of / . 

For the AES, the naive approach would be to verify whether the poly
nomial koj + aj belongs to the ideal / generated by the AES polynomial 
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SR(2,1,1,4) 
SR(3,1,1,4) 
SR(4,1,1,4) 
SR(5,1,1,4) 
SR(6,1,1,4) 
SR(7,1,1,4) 
SR(8,1,1,4) 
SR(9,1,1,4) 
SR(10,1,1,4) 
SR(2,1,1,8) 
SR(3,1,1,8) 

Number of 
variables 

36 
52 
68 
84 
100 
116 
132 
148 
164 
72 
104 

Number of 
equations 

104 
152 
200 
248 
296 
344 
392 
440 
488 
172 
252 

Number of 
monomials 

137 
201 
265 
339 
393 
457 
521 
585 
649 
365 
541 

Time in 
seconds 

0.03 
0.11 
0.28 
0.97 
4.30 

11.26 
16.56 
46.05 
74.06 

118.45 
N/A 

Figure 6.3. The computation time of tlie F4 algorithm for the system of equations 
generated by SR.(r, 1,1, e) over GF(2). 

equations. In this case, the key byte is given by /CQJ = aj. However, the 
Grobncr basis G of Section 5.4 gives solutions over tlie algebraic closure 
of F . Thus, even if wc linow that the system has unique solution in F 
given by /co,j = flj, all we can guarantee is that a polynomial of the form 

q • (fcoj + ajf 

belongs to the ideal / associated with the AES equation system, where 
q G F[fco,j]. The degree of this polynomial, as well as the exponent t, 
are related to the dimension of the quotient ring R. Therefore it seems 
unlikely that this approach can give an efficient method for solution of 
the AES equation system. 

It is quite surprising that a Grobner basis for the AES equation system 
can be obtained in such a straightforward manner [14]. Although obvious 
natural approaches do not seem to provide a direct solution to the key 
recovery problem, it is an interesting question whether the existence of 
such a Grobner basis for the AES equation system can be exploited. 

E x p e r i m e n t a l resul ts 

We now discuss some experimental results concerning Grobner basis 
methods for solving the equation systems arising from small scale vari
ants of the AES (Section 3.3). These results were originally presented 
in [22], The experiments were performed using the computer algebra 
package MAGMA [77] which includes an efficient implementation of the 
F4 algorithm. The Grobner bases were computed with respect to the 
grevlex monomial ordering, and the experiments were performed on a 
HP workstation running Windows X P with a Pentium 4 - 3GHz pro-
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SR(2,1,1,4) 
SR(3,1,1,4) 
SR(4,1,1,4) 
SR(5,1,1,4) 
SR(6,1,1,4) 
SR(7,1,1,4) 
SR(8,1,1,4) 
SR(9,1,1,4) 

SR(10,1,1,4) 
SR(2,1,1,8) 
SR(3,1,1,8) 

Number of 
variables 

36 
52 
68 
84 
100 
116 
132 
148 
164 
72 
104 

Number of 
equations 

72 
104 
136 
168 
200 
232 
264 
296 
328 
144 
208 

Number of 
monomials 

89 
129 
169 
209 
249 
289 
329 
369 
409 
177 
257 

Time in 
seconds 

0.11 
0.75 
2.02 
7.47 

23.71 
56.74 
43.70 

219.38 
340.31 

43.55 
N/A 

Figure 6.4- The computation time of the F4 algorithm for the system of equations 
generated by SR(7-, 1,1, e) over GF(2'=). 

cesser and 1 GB of RAM. Even though these simple experiments use 
off-the-shelf software with limited computing resources, they are helpful 
as a preliminary assessment of algebraic attacks against the AES. While 
small scale variants might not exhibit all the features of the AES, they 
might provide an understanding of how various components and repre
sentations of the AES contribute to the complexity of algebraic attacks. 

We first discuss the experimental results of [22] for the small scale 
variants SR(r, 1,1,4) and SR(r, 1,1,8). These small scale variants are 
defined in Section 3.3. Each variant gives rise to an equation system 
over GF(2) (Section 5.2) and a BES-style equation system over GF(2'^) 
or GF(2*) (Section 5.3). Figure 6.3 shows the experimental results for 
equation systems over GF(2). The experimental results for the BES-
style equation systems over GF(2^) or GF(2^) are given in Figure 6.4. 
In both Figures 6.3 and 6.4, N / A indicates that a timing is not available 
due to there being insufficient memory available to complete the com
putation. It was observed that the time to solution depended greatly on 
the ordering of the variables [22]. 

The block cipher SR(r, 1,1, e) is particularly simple and based on a 
1 x 1 array. Wc would expect to easily solve the equation system of 
such a block cipher with many rounds. However there was insufficient 
memory to solve the equation system of SR(3,1 ,1 ,8) , even though it 
is of comparable size to that of the easily solved equation system of 
SR(6 ,1 ,1 ,4) . This suggests that the field relations, which are used in 
a different way in the BES-style equations over GF(2'^), may play an 
important role in the computations for solving the system. 
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SR(1,2,1,4) 
SR(2,2,1,4) 
SR(3,2,1,4) 
SR(4,2,1,4) 
SR(1,2,2,4) 
SR(2,2,2,4) 

Number of 
variables 

40 
72 
104 
136 
72 
128 

Number of 
equations 

80 
144 
208 
272 
144 
256 

Number of 
monomials 

97 
177 
257 
337 
169 
305 

F4 
time in 
seconds 

0.22 
24.55 

519.92 
N/A 

27.73 
N/A 

Buchberger 
time in 
seconds 

1.11 
40.58 

2649.90 
28999.41 

444.07 
N/A 

Figure 6.5. The computation time when using an F4 and Buchberger Grobner basis 
computation for the system of equations generated by SR(r, •, -,4) over GF(2'*). 

A comparison of the results in Figures 6.3 and 6.4 shows that timings 
for the equation systems of SR(r, 1,1,4) over GF(2) are much better 
than those for the same block cipher over GF(2^). However the system 
for SR(2,1,1 ,8) shows the opposite behaviour. Thus it is not clear 
whether bit-level equations generally offer a better representation than 
BES style equations, particularly since MAGMA'S implementation of the 
F4 algorithm appears to be heavily optimised for operations over GF(2). 
Given the highly structured and sparse nature of the BES-style equation 
systems over GF(2'^), we would expect a Grobner basis algorithm that 
has been optimised for GF(2'^) to give the best algebraic attack against 
these AES variants. 

We now discuss experiments on the small scale variants SR(r, 2,1,4) 
and SR(r, 2 ,2 ,4) , which are block ciphers based on a 2 x 1 and a 2x2 
array respectively [22]. Experiments to solve the equation systems of 
these block ciphers using the MAGMA implementations of Buchbergcr's 
algorithm and the F4 algorithm are presented in Figure 6.5, with N / A 
again indicating insufficient memory. Whilst we would expect Buch-
berger's algorithm to be slower, it should also require less memory than 
the F4 algorithm. We note that the equation system for SR(4, 2 ,1 , 4) is 
comparable to the equation system for SR(2, 2, 2,4). However, only the 
latter proved to be intractable. This illustrates the important role played 
by the inter-word diffusion in the complexity of the computations. The 
diffusion of SR(r, 2,1,4) is hmited, whereas SR(r, 2,2,4) has a similar 
diffusion pat tern to the AES. 

The block ciphers in [22] have very small key spaces and can easily be 
broken by exhaustive key search. However, the results in [22] are solely 
concerned with algebraic analysis. As such, they provide a preliminary 
insight into the behaviour of algebraic attacks against AES-like block 
ciphers, though they seem to indicate that general purpose Grobner 
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basis methods arc unlikely to solve a full equation system arising from 
the AES. 

Some other experiments on equation systems with a similar structure 
to AES equation systems, that is with layers of linear and non-linear 
equations repeated for many rounds, are presented in [3]. These results 
on very small systems seem to indicate that the maximum degree of 
polynomials obtained during the running of the F5 algorithm is bounded 
by a reasonably small value for any number of rounds. This would 
suggest that the complexity of solving such a system is not what we 
would expect from a comparable generic system. However the connection 
between the equation systems in [3] and the AES equation system is 
not sufficiently strong to conclude that an AES equation system would 
behave in a similar manner. 

2 . L i n e a r i s a t i o n M e t h o d s 
Linearisation is a well-known technique for solving certain large sys

tems of multivariate polynomial equations. Suppose we have a system 
of polynomial equations 

/ i(a; i , .. . ,a;„) = 0, . . . ,/,n.(a;i, , .. , x„) = 0 

over a field F, and let {/i,. . . , / „ } be the associated set of polynomials 
in the polynomial ring F[a ; i , . . . , a;„]. Each polynomial is a finite linear 
combination of monomials x^^Xg^ . . . x'^" = X" over F, so we have 

where c„ e F and A '̂ is a finite subset of the set of multi-indices N" 
(Definition 2.29). We linearise this system by considering the monomials 
X" as new independent variables Xa to obtain a new linear system in 
the variables X„ . Thus to solve the system by linearisation, we can 
construct the matrix Ai of this resulting linear system, where Ai is 
given by 

/: 

fn 

Xa • • • Xa 

cl . . . cl 

\ ' 

and then reduce the matrix Ai to echelon form. Any solution of the 
original polynomial system gives a solution of this resulting hnear sys
tem, so the solutions of this linear system can be checked for consistency 
to obtain solutions for the original polynomial equation system. 
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The polynomial ring F[a; i , . . . , a:„] is a vector space over F, so this 
method essentially computes a basis of the vector subspace generated 
by the polynomials fi, • • •, fm- It is clear that the linearisation method 
can only be effective if the number of linearly independent polynomials 
in the system is approximately the same as the number of monomials. 
For generic systems of equations of degree d in n variables, there are 
about ("J ) distinct monomials of degree at most d. For finite fields F, 
we can also make use of the field relations. For example, for GF(2) we 
can identify xf with Xi, so there are about A'̂  = X^j^g (") ~ "• distinct 
monomials of degree at most d, and the matrix Aj^ has m rows and 
about A'̂  columns. For this system to be soluble directly by linearisa
tion, we generally require that m > N — 1. Thus a necessary condition 
for linearisation to be effective is that the polynomial system be highly 
overdefined. 

E X A M P L E 6.7 We consider the polynomial ring Q[x,y,z] of polynomi
als in three variables over the rational numbers. Suppose we have the 
equation system 

xyz + xz + X + 2y + z — 3 = 0 
2xyz — Axy + xz + yz ~ x + y = 0 

xy + xz + yz + y — z — 2 = 0 
2xy + y + 7 = 0 

2yz + X + y + z = 0 
xyz + X + 2z — 1 = 0 

2xyz — xy — 3yz — 'iy = 0. 

This system has seven equations and seven non-constant monomials, so 
it is a candidate for solution by linearisation. We construct the lineari
sation matrix 

xyz xy xz yz 

/ 1 
2 
0 
0 
0 
1 

[ 2 

0 
- 4 
1 
2 
0 
0 

- 1 

1 
1 
1 
0 
0 
0 
0 

0 
1 
1 
0 
2 
0 

- 3 

1 
- 1 
0 
0 
1 
1 
0 

2 
1 
1 
1 
1 
0 

- 3 

1 
0 

- 1 
0 
1 
2 
0 

0 
2 
7 
0 

0 

3 \ 

0 / 
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Applying row reduction to this matrix gives the matrix 

103 

xyz xy xz yz X y z 

/ 1 
0 
0 
0 
0 
0 

V 0 

0 
1 
0 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 
0 

0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
0 
1 

6 \ 
3 

- 6 
2 

^3 
1 

-v 
This gives us the solution x = ^, y = —1, z = 2, which is the solution of 
the original polynomial equation system. • 

If we assume that the matrix AL is a square matrix of size A'', then the 
linearisation method has complexity of the order of A^" field operations, 
where w is the exponent of matrix reduction (Definition 2.53). 

The hnearisation method has been successfully used in the cryptanal-
ysis of some LFSR-based stream ciphers [29]. However, it seems very 
unlikely that linearisation can bo used in a straightforward manner in 
the analysis of block ciphers. While equation systems for the AES are 
overdefined, they are not sufficiently overdefined to allow us to solve 
them by linearisation. 

T h e XL a lgor i thm 

The linearisation method fails when there are not enough linearly in
dependent polynomials. Some methods have been proposed that extend 
the original equation system. The intention is to generate enough lin
early independent equations, and then to apply the linearisation method 
to this new extended polynomial equation system. We now discuss the 
most prominent of these methods, the extended linearisation or XL al
gorithm [28]. The XL algorithm was specifically proposed as an efficient 
algorithm for algebraic attacks against certain asymmetric cryptosys-
tems based on multivariate quadratic equation systems. 

Suppose that we have a system of polynomial equations 

/ i (a; i ,a ;2, . . .,a;„) = 0, . . . , /m(a;i, X2 , . . . , a;„) = 0 

over a field F of degree at most d, and let { / i , . . . , fm} be the associ
ated set of polynomials in the polynomial ring F[a ; i , . . . ,a;„]. The XL 
algorithm multiplies the polynomials in the original system by all mono
mials X" up to some prescribed degree D — d. Thus the XL algorithm 
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Input: Set F — {/i , . . . , / „ } C F[a;i , . . . , Xn] of polynomials of degree d. 
Output: Set S C F[x i , . . . ,x„] of univariate linear equations corresponding to 
the solution of the system fj = 0. 

S:=0; 
D:=d+l; 
i := 1; 
repeat 

Generate all products P(/3,j) = X^fj for fj 
variables Xi,... ,Xn of degree at most D — d; 

10: 
11: 

12 
13: 
14 
15, 
16; 
17: 
18: 
19 
20 
21 

F and monomials X^ in the 

Consider the system consisting of equations P{a,j) = 0 and an order on the 
monomials such that the monomials the lowest. Perform Gaussian re
duction on the corresponding matrix, that is solve the system by linearisation; 
if a univariate f{xi) is found then 

Solve the univariate equation to get set of solutions Ai in the algebraic 
closure of the field F; 
Take the (unique) a; G At contained in the field F; 
Make S := S U {x, - ai}; 
Make P(nj) = P((»,j)(^t) G If[:ri+i, • • • ,Xn], that is substitute xt = a;; 
Make i := i + 1; 

else 
Make D := D + I; 

end if 
until i = n + 1; 

return S 

Figure 6.6. The XL algorithm for an equation system with a vmique solution. 

constructs the matrix AXL given by 

h I ci 

x^h 

X^' /„ VC- P' 

Xa' 

a' 

-P'J 
The XL algorithm at tempts to use Hncarisation on the extended equa
tion system to find a univariate polynomial. This means that the XL 
algorithm can find solutions even if the matrix AXL does not quite have 
full rank. As with linearisation, any solution of the original equation 
system gives a solution of the extended linear system, so solutions of 
the extended system can be checked for consistency to give solutions for 
the original system. The XL algorithm for an equation system with a 
unique solution in ¥ is given in Figure 6.6. 



Analysis of AES Equation Systems 105 

The XL algorithm is supposed to be especially suitable for ovcrdefined 
systems, and a number of variants of the XL algorithm have been pro
posed to exploit special properties of such systems in different cases [26, 
30, 32]. The XL algorithm can also be modified to use the field rela
tions zl — Zi oi a finite field. In this case, after every multiplication, 
the resulting polynomials are reduced with respect to the field relations. 
This algorithm is called reduced XL algorithm in [41] and potentially re
duces the size of the matrix generated by the algorithm. However, these 
versions of the XL algorithm have been shown to be part of the same 
general theoretical framework [41]. 

E X A M P L E 6.8 We consider the equation system over GF(23) given by 

x'^ + 3xy+17 = 0 and tf + 7xy -I- 22 = 0. 

The XL algorithm with £) = 4 multiplies the two polynomials by the 
monomials {x,y,x^,xy,y'^} to give the following polynomials 

Multiplier x^ -I- "ixy -h 17 
cc" + ix^y -f 17a; " 
x^y + 3a;i/ -h VJy 
x'^ ^"ix^y-VVJx^ 

x^y + 3x^2/^ + I7xy 
x^t/ + 'ixi/ + 17?/2 

y"^ + 7xy + 22 
T II 1 

x^/ + 7x^y + 22a; 
y^ + 7xy'^ + 22y 

a;2j/2 -I- Tx'^y + 22a;2 
xy^ + 7x^1/ + 22xy 

y'^ + 7xy^ + 22y2, 

X 

xy 

We can now construct the corresponding matrix AXL 

x" 

/o 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

^ 0 

X^J 

0 
0 
0 
3 
1 
0 
0 
0 
0 
7 
0 
0 

2 2 
X y 

0 
0 
0 
0 
3 
1 
0 
0 
0 
1 
7 
0 

xy"" 

0 
0 
0 
0 
0 
3 
0 
0 
0 
0 
1 
7 

x^ 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

x'^y 

0 
3 
1 
0 
0 
0 
0 
7 
0 
0 
0 
0 

xtf 
0 
0 
3 
0 
0 
0 
0 
1 
7 
0 
0 
0 

x^ 

1 
0 
0 
17 
0 
0 
0 
0 
0 
22 
0 
0 

xy 

3 
0 
0 
0 
17 
0 
7 
0 
0 
0 
22 
0 

X 

0 
17 
0 
0 
0 
0 
0 
22 
0 
0 
0 
0 

y' 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

' / 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

y' 
0 
0 
0 
0 
0 
17 
1 
0 
0 
0 
0 

22 

y 
0 
0 
17 
0 
0 
0 
0 
0 
22 
0 
0 
0 

1 

17\ 
0 
0 
0 
0 
0 
22 
0 
0 
0 
0 
0 / 
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This matrix can be reduced by row operations to give the matrix 

I " 

/ 1 
0 
0 
0 
0 

n 
0 
0 
0 
0 
0 

Vo 

x"y 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 2 
^ y 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

xy" 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

i ^ 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

x^y 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

xy'^ 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 

x^ 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

XXJ 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

X 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

y' 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

y' 
0 
0 
0 
0 
17 
16 
10 
0 
0 
7 
0 
0 

f 
15 
4 
11 
2 
0 
0 
0 
16 
10 
0 
8 
0 

y 
0 
0 
0 
0 
2 
1 
13 
0 
0 
20 
0 
0 

1 

°\ 2 
10 
12 
0 
0 
0 
1 
13 
0 
8 
0 / 

The penultimate row gives the equation 

i/ + 8j/2 + 8 = (j/ - 3)(y - l l ) ( y - 12)(y - 20) = 0, 

which gives {(4, 3), (8,11), (15,12), (19, 20)} as the solution set. D 

Terminat ion of t h e X L a lgor i thm 

Soon after it was proposed, doubts were cast on whether the XL al
gorithm would terminate for all inputs [81]. In fact, there are many 
inputs for which the XL algorithm fails to terminate. In order for the 
XL algorithm to terminate, the reduction of the matrix AXL has to yield 
a univariate polynomial at every interaction of the algorithm. For the 
XL algorithm with parameter D, the maximum possible degree for this 
univariate polynomial is D. Thus if the difference between the num
ber of columns of AXL and the rank of AXL is greater than D, it may 
be reasonable to expect that the algorithm would not yield a univari
ate polynomial following the reduction of AXL- There exist examples 
where this difference always exceeds £>, however large the parameter D 
is chosen, and the XL algorithm fails to terminate for many of these ex
amples. Tha t such examples exist can be demonstrated using techniques 
from Hubert Theory [34]. 

The polynomial ring ¥[xi,... ,a;„] is also a vector space over F (Ex
ample 2.40), and we let F [a ; i , . . . , a;„]s and F[a ; i , . . . , Xn]<s denote the 
subspaccs generated by the monomials of degree s and the monomials 
of degree at most s respectively. We can now define the homomorphism 

iys:¥[xi,...,Xn]<s 

f 

F[a;o,a;i 

so Vsif) is a homogeneous polynomial of degree s in n -f 1 variables. 
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Suppose now that we have a quadratic equation system and that 
{ / i , . . . , /„ ,} is the associated set of polynomials in F[ , ' r i , . . . , a;„]. We 
can define the ideal 

^ = ( i^2(/l), • • • , l^2{fm) ) <1 lF[a;0, Xi,..., Xn], 

and we let I^ = I n¥[xo,xi,..., x„]s be the s-homogcncous component 
of / , tha t is the subset of all homogeneous polynomials of degree s in / . 
It is shown in [41] that if 

X{D) =dimF(F[a;o,a;i , . . , ,a:„]D) ~ dimiF(7i3) < D, 

then the Gaussian reduction of the matrix AXL in the XL algorithm with 
parameter D yields a non-trivial univariate polynomial. Following [41], 
we define Dmin the least positive integer D such that xi^) ^ D- If 
there is no such D, then we say that Dmin = oo and it is very likely that 
for most such systems the XL algorithm does not terminate. 

The function x{D) is called the Hilbert Function of / [34]. The ideal 
/ defines a projective variety W ( / ) , of which the affinc portion is defined 
by the ideal / = ( / i , . . ., / „ ) (Section 2.5). A well-known result from 
Hilbert Theory states that for D largo enough, the Hilbert function xi^) 
is a polynomial in D, called the Hilbert Polynomial, with degree equal 
to the dimension of W{I) [34]. 

This result about the Hilbert polynomial has important consequences 
for the XL algorithm. If the projective variety VV(/) has nonzero dimen
sion, then x{D) is a non constant integer polynomial for large enough 
D. We would thus expect x{D) > D for large enough D. In this case, 
the reduction of the matrix AXL should not yield a univariate polyno
mial for most systems, and it is very likely that the XL algorithm docs 
not terminate. However, in the equation systems that arise in cryptol-
ogy, we are usually interested in the unique solution to the equation 
system over a small field and can therefore include the field equations 
x1 — Xi = 0. The associated projective variety is then zero-dimensional, 
tha t is dim(yV(/)) = 0. This guarantees that there exists a value of D' 
such that the Hilbert function is constant for all D > D', and the XL 
algorithm should terminate in these cases of cryptographic interest. 

C o m p l e x i t y of the XL a lgor i thm 

We consider the complexity of solving a generic multivariate quadratic 
equation system with m quadratic equations and n variables using the 
XL algorithm. The XL algorithm at tempts to solve this system by mul
tiplying the m quadratic equations in the system by all monomials up 
to a prescribed degree {D — 2), and then solving the resulting extended 
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system of maximal degree D by linearisation. The number of monomials 
in F [a ; i , . . . , a;„] of degree at most D is ( "+^) . Thus the XL algorithm 
generates an extended equation system with 

fn + D-2\ . . , /n + £)\ , . 
ml o ) equations m about I I distmct monomials. 

If the equation system is over GF(2), then the field relations allow us to 
identify xf with Xi. In this case, the (reduced) XL algorithm generates 
an extended equation system with 

D - 2 / X D 

m 
i=0 ^ " ' i=0 

If the extended equation system contains N monomials, then the com
plexity of the XL algorithm is expected to be of the order of A '̂̂  field op
erations, where u) is the exponent of matrix reduction (Definition 2.53). 

The key issue in obtaining lower bounds for the complexity of the XL 
algorithm is finding Dmm, the minimal degree D such that x{D) < D. 
For this value of D, the XL algorithm is expected to yield a univariate 
polynomial. The value D is determined by the number of linearly inde
pendent polynomials (over F) generated by each interaction of the XL 
algorithm. We note that it is very difficult to obtain accurate estimates 
for Dmin [18, 19]. The original heuristic estimates from the XL proposal 
are given in [28], where it was suggested that the algorithm had subex-
ponential complexity when m > n. However, these estimates proved to 
be too optimistic. In fact, for m = n + c (c > 1), we have 

VC - 1 + 1 

with more precise lower bounds when c > 3 [41]. Thus the complexity 
of the XL algorithm does not seem to be subexponential in n. 

A compact AES quadratic equation system over GF(2) has 8000 equa
tions in 1600 variables, excluding field equations (Section 5.2). For such 
a system, the value Dmin = 18 is suggested in [31]. This estimate is 
based on the original heuristic complexity estimates for the XL algo
ri thm given in [28] and would give a complexity of the order of 2'̂ '̂ '̂  
field operations to solve the AES equation system. In fact, the results 
of [41] show that D„ii„ > 44, which gives a complexity for solving the 

AES equation system of at least the order of ( E S O CT)Y "^ ^^^^ field 

operations [20]. Even though variants of the XL algorithm might reduce 
this figure to the order of 2"̂ *̂  field operations [30], it seems that solv
ing a generic quadratic equation system of comparable size to an AES 
equation system using the XL algorithm is infeasible. 



Analysis of AES Equation Systems 109 

C o m p a r i s o n b e t w e e n the XL and Grobner basis a lgor i thms 

The XL algorithm was proposed specifically to solve systems of multi
variate equations arising in cryptology. Such systems typically have a 
unique solution over a small finite field and arc often overdefined. It was 
intended that the XL algorithm would exploit these properties to find the 
solution of such a system without having to compute the Grobner basis of 
the associated ideal using some generic Grobner basis algorithm. In fact 
the authors of the XL algorithm expected that the algorithm would be 
more efficient than Grobner basis algorithms in these special cases [28]. 
However, there is now a much better understanding of the behaviour of 
the XL algorithm than when first proposed [4, 17-19, 41]. In particular, 
it has been shown that the XL algorithm is much more closely related 
to Grobner basis algorithms than had been originally anticipated. 

The relationship between the XL algorithm and Grobner basis algo
rithms is considered in [4]. An analysis of a version of the XL algorithm 
shows that the XL algorithm works in a similar manner to the F4 calcu
lation of a Grobner basis of a polynomial ideal with the lex ordering. In 
the case of an equation system over a finite field with a unique solution, 
the XL algorithm computes the Grobner basis of the associated ideal of 
the equation system and the field equations and it can be seen as a re
dundant version of the F4 algorithm. For such an equation system over 
GF(2), the degree D for the XL algorithm should be roughly the same 
as the degree of the polynomials required by the F5 algorithm. While 
the matrix used by the F5 algorithm is expected to be smaller than the 
matrix used by the XL algorithm, for an equation system over GF(g) 
with g S> n, it is unhkely that reductions by the field relations occur. 
In such cases, the degree D required by the XL algorithm is Hkely to be 
higher than that required by the F5 algorithm using grevlex ordering [4]. 

The results of [4] therefore seem to indicate that the XL algorithm 
in its current form offers little benefit over efficient versions of generic 
Grobner basis algorithms such as F4 and F5. 

3. Specialised Methods 
The discussions of previous sections seem to indicate that there is lit

tle hope that general techniques from computer algebra might be used 
in a straightforward manner to solve the equation systems arising from 
modern block ciphers. However, equation systems arising from iterated 
block ciphers can be viewed as iterated systems of equations, with simi
lar blocks of multivariate quadratic equations repeated for every round. 
These blocks arc connected to each other by their input and output vari
ables and by the key schedule. These equation systems arc highly sparse. 
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Thus it might be more promising to apply some dedicated method, per
haps built on known techniques from computer algebra, but aiming to 
exploit the special properties of a target system. We discuss some of 
these proposals below. 

T h e X S L A l g o r i t h m 

The extended sparse linearisation or XSL algorithm was designed to 
exploit the structure of equation systems arising from iterated block ci
phers. The XSL algorithm was introduced in [31, 32], where its proposed 
application to the AES equation system attracted much attention. 

The XSL algorithm is based on the XL algorithm (Section 6.2). In the 
XSL algorithm the equations are multiplied only by "carefully selected 
monomials", whereas the equations are nmltiplied by all monomials up 
to a certain degree in the XL algorithm. This is the core idea in the XSL 
algorithm and is intended to generate a large number of equations whose 
terms are the product of selected monomials. The goal is therefore to 
create fewer new monomials while generating many new equations in the 
extended equation system. The XSL algorithm also incorporates an ad
ditional last step called the T method, in which new linearly independent 
equations arc generated without creating any new monomials. 

Different versions of the XSL algorithm have been published. The first 
version was proposed in [31], where two different attacks on the AES 
based on the XSL algorithm are described. The first version requires a 
few plaintext-ciphertext pairs in order to eliminate the key variables and 
key schedule equations as a preliminary step. The second version should 
require only a single plaintext ciphcrtext pair and uses the key schedule 
equations. The compact XSL algorithm is a slightly different version of 
the algorithm and was introduced later [32]. A heuristic description of 
the steps in an XSL-type algorithm is given in Figure 6.7 

The basic idea behind the XSL algorithm is to expand the original 
system by multiplying equations only by the product of monomials that 
already exist in the original equation system. For a sparse equation 
system, this potentially decreases the number of monomials generated 
in the extended equation system when compared to the extended system 
generated by the XL algorithm. Furthermore, as the XSL algorithm is 
based on the linearisation method, the algorithm should benefit from 
overdefined systems. 

The XSL algorithm was intended to exploit the structure of some 
types of block cipher. In its basic version, the XSL algorithm assumes 
that the block cipher is built with layers of small S-Boxes interconnected 
by a key-dependent affine transformation. It is further assumed that the 
S-box can be described by an overdefined set of quadratic equations. For 
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Input: System of block cipher polynomial equations / i = , . . = /,„ = 0. 
Output: Solution ( a i , . . . , a„) where / i ( a i , . . . , a,i) = . . . = / ( a i , . . . , an) = 0. 

Choose certain sets of monomials and equations which are to be used during the 
later steps of the algorithm by analysing the original equation set. 

5: Select the value of the parameter P and multiply the chosen equations by the 
product of P — 1 selected monomials. 

6: Perform the T' method in which some selected equations are multiplied by single 
variables. 

7: Iterate T' with as many variables as necessary until the extended system has 
enough linearly independent equations to apply linearisation. 

8: 
9: Return Solution of the extended system obtained by linearisation 

Figure 6.7. Heuristic description of an XSL-type algorithm. 

example, the AES and the block cipher S E R P E N T [9] both use S-boxes 
that give rise to an overdcfined systems of quadratic equations. The 
equation systems for such blocl<; ciphers are sparse and XSL is supposed 
to take advantage of this when expanding tlie system prior to linearisa
tion. For versions of the XSL algorithm that use key schedule equations, 
the key schedule should have a similar structure to the state encryption 
transformation. This is the case for the AES. 

X S L analys is 

The XSL algorithm could be considered a general method for solving 
certain structured but sparse systems of quadratic equations. However, 
it was the proposal to apply XSL to the equation system of the AES 
tha t at tracted much attention. 

Estimates for the complexity of the XSL algorithm arc given in [32] 
and refer to an analysis without the key schedule. These estimates give 
a complexity of the order of 2^^^ field operations to solve the equation 
system arising from the AES with 256-bit keys. It was also claimed that 
much better results could bo obtained when applying the complexity 
estimates to equation systems including the key schedule, especially if 
the BES-style equation system for the AES is used (Section 5.3). In 
such a case, the complexity estimates for solving an equation system 
over GF(2^) for the AES with 128-bit keys suggested that around 2^°^ 
field operations would be required, which is roughly equivalent to 2̂ ™̂ 
AES encryptions. This implied that if the XSL algorithm complexity 
estimates of [32] were correct, then AES key recovery might have been 
possible with a lower work effort than exhaustive key search [89, 90]. 
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However, the heuristic estimates for the complexity of the XSL algo
ri thm in [32] arc too optimistic and overestimate the number of linearly 
independent equations generated by the algorithm. This is shown by the 
application of the XSL complexity estimates to the BES-style equations 
for the AES given by [90]. There it is demonstrated that such estimates 
would give significantly more linearly independent equations than terms, 
even though this is clearly impossible. 

The heuristic XSL complexity estimates of [32] overestimate the num
ber of linearly independent equations for two reasons. Firstly, it is as
sumed that all equations generated by the method are linearly indepen
dent. This is clearly not the case. For example, if / ; and fj are two 
polynomials in the initial quadratic system defined as 

f,= Yl cU" and /, = Y. 4^^^ 

then even for P = 2 we have the relation 

fi • [fi] = E ^c.x" -fj^Yl 4^" • f' = fj • [/^]-

There are many relations of this type. Secondly, the XSL algorithm 
states that neighbouring S-Boxes need to be excluded when multiplying 
the Unear equations, but this is not taken into account in the estimates. 
Revised estimates for the XSL complexity arc given in [20]. 

Whilst doubts were very quickly cast on the general idea of the XSL 
algorithm, until recently very little was known about its detailed be
haviour. There are a number of reasons for this. Firstly, the XSL al
gorithm as proposed in [31, 32] relies on the system having a special 
form, and this makes it harder to give a precise mathematical analysis 
of the algorithm. Secondly, different versions of the XSL algorithm were 
published, and in all cases the description left room for interpretation. 
Furthermore, given the size of the systems involved, it is very difficult 
to implement and run experiments even on small examples to examine 
the heuristic arguments of [31, 32]. 

A detailed analysis of the XSL algorithm is presented in [20], including 
a simulation on a small variant of the AES. It is shown that the XSL 
algorithm of [32] cannot solve the equation system arising from the AES. 
The problem arises from the way the original equations are processed 
prior to multiphcation and the selection of monomials. An alternative 
to the XSL algorithm is also discussed, but generally it appears unlikely 
that analytical techniques of this type would be successful [20]. 
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Figure 6.8. An illustration of the meet-in-the-iniddle technique for the AES. 

Meet-in-the—middle techniques 
The iterative nature of bloclc cipliers means tiiat tiie associated equa
tion systems arc typically structured in blocks. For example, the equa
tion system for the AES consists of ten similar blocks of multivariate 
quadratic equations, each block containing the equations for one round. 
Variables in one block only occur in neighbouring blocks or within the 
relevant part of the key schedule. 

A promising technique to find the overall solution for such equation 
systems is to employ a meet-in-the-middle approach. We divide the 
equation system for r rounds into two subsystems for | rounds, where 
we assume without loss of generality that r is even. We regard the 
output variables of the first equation subsystem as the input variables of 
the second equation subsystem. We can then make use of Theorem 6.5 to 
simplify the problem. Theorem 6.5 gives a method for obtaining all the 
relations between variables in a subset S' of the set of variables S. We 
first compute the Grobner basis G with respect to the lex ordering of the 
ideal generated by the set of polynomials associated with the equation 
system. We then extract those polynomials in the Grobner basis G which 
involve only those variables in the subset S'. This technique essentially 
eliminates all variables in the set S \ S'. 
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SR(10,1,1,4) five rounds -^ 
SR(10,1,1,4) five rounds ^ 

Solution 

Number of 
variables 

88 
76 
16 

Number of 
equations 

172 
148 
40 

Number of 
monomials 

217 
189 
52 
Total 

SR(4,1,1,8) two rounds -» 
SR(4,1,1,8) two rounds <-

Solution 

80 
56 
32 

152 
104 
80 

193 
137 
576 
Total 

SR(4,2,1,4) two rounds -^ 
SR(4,2,1,4) two rounds ^ 

Solution 

80 
56 
80 

152 
104 
176 

193 
137 
524 
Total 

Time in 
seconds 

19,22 
22,41 

0,02 
41.65 

15466,37 
4603,89 

215,92 
20286,18 

667,17 
2722,43 

14,87 
3404,47 

Figure 6.9. Experimental results on the meet-in-the-middle approach when using 
F4 with the lex ordering. 

For the AES equation system with r rounds, we compute the Grobner 
bases of the two equation subsystems with respect to the lex ordering. 
We then ehminatc variables that do not appear in rounds ^ and 5 + 1. 
This gives two small systems of equations in variables from the two 
systems that are simply related by the round keys. These two equation 
systems can then be combined with some additional equations from the 
key schedule and solved to obtain the key (Figure 6.8). 

Experimental results using this approach on AES variants are given 
in [22] and presented in Figure 6.9. These results seem to confirm that 
a meet - in- the middle technique may be more efficient than solving the 
full AES equation system directly. For example, the equation system for 
the small scale AES variant SR(10,1,1,4) (Section 3.3) can be solved 
with the meet -in-the-middlc approach in 42 seconds, whereas the direct 
approach took 340 seconds (Figure 6.4). Better results were also ob
tained for SR(4 ,1 ,1 , 8) and SR(4, 2 ,1 , 4) using the meet-in -the -middle 
approach. 

The meet- in- the middle approach is cryptographically intuitive and 
can be considered within the context of time-memory trade-off attacks. 
In a chosen-plaintext attack, the first subsystem of equations does not 
change and solving this equation subsystem can be considered precom-
putation. Although the exact complexity and storage requirements for 
this precomputation phase are not clear, such prccomputation would 
clearly reduce the time complexity of the online attack. 

One possible drawback to this approach is that computations using 
elimination orderings such as lex are often less efficient than those with 
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SR(4,2,1,4) two rounds -> 
SR(4,2,1,4) two rounds <-

Solution 

Number of 
variables 

112 
104 
136 

Number of 
equations 

216 
200 
1197 

Number of 
monomials 

273 
257 
918 
Total 

Time in 
seconds 

553.63 
1501.41 

12.68 
2067.72 

Figure 6.10. Experimental results on the meet-in-the-middle approach when using 
F4 with the grevlex ordering. 

degree orderings such as grevlex. Thus we might expect that using the lex 
ordering in the two subsystems would give only limited advantages over 
using the grevlex ordering for the full system. An alternative approach 
would be to simply compute the Grobner bases for the two subsystems 
using the most efficient ordering and then to combine both results to 
compute the solution of the full set equations. Some experimental results 
on this approach from [22] are given in Figure 6.10. These indicate that 
this approach was more efficient for the small scale variant SR(4, 2 ,1 ,4) , 
though more expensive for the small scale variant SR(10,1,1,4) . 

In general, however, the experimental results of [22] suggest the appli
cability of a more general divide- and-conquer approach to the problem 
of solving the equation system deriving from the AES. In such an ap
proach, some form of (perhaps largely symbohc) pro-computation could 
take place. This could then be used to produce the solution to the full 
equation system. 
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CLOSING REMARKS 

In this monograph we have provided a summary of topics in the al
gebraic analysis of the AES. While appealing to algebraic techniques in 
cryptanalysis is not new, the range of algebraic techniques that might 
be used in an analysis of the AES is unprecedented. No other major 
bloclc cipher offers quite the same opportunities. The AES has a round 
function that can be described in a particularly succinct fashion and the 
entire encryption process can be represented by a compact and simple 
system of equations. 

The designers of the AES were careful to ensure that traditional tech
niques would not be useful in any cryptanalysis. Thus techniques from 
areas of mathematics and computer science not ordinarily considered in 
cryptology may be needed for any substantive cryptanalysis of the AES. 
The most direct method of cryptanalysis would be to recover an AES 
key by solving an equation system. However, it is unlikely that any gen
eral purpose method for doing this would be successful against the AES. 
Instead, it is almost certain that techniques tailored to the AES would 
be required. 

We anticipate that a greater understanding of the algebraic properties 
of the AES will be developed in the coming years. However, there arc 
currently no techniques, algebraic or otherwise, that compromise the 
security of the AES. 



Appendix A 
Inversion Equations over GF(2) 

We assume the bit ordering {WT, .. . ,WO)'' for bytes in the AES. The matrices Te 
and S, corresponding respectively to multiplying by 0 and squaring in F, are given in 
Example 2.65. As described in Section 5.2, for w,x ^ 0 we have 

C„x = (0,0,0,0,0,0,0,1)'^' 

where C,„x is given by 

UI7X7 + UI7X6 + WjXi + tOy lo + lUo l6 + WeX5 + UloSi + 105X7 

+ ^ 5 X 0 + 105X2 + WjXj + WiX3 + U)33:4 + W2X5 + t» iX6 + t»Q3:7 

!)7Xe + W7X4 + M7X3 + W6X7 + WSXB + U)CX4 + W6X0 + W S X G + UJ5X5 

1)5X1 + 104X7 + WjXo + W4X2 + t»3X7 + 1^33^3 + IJ'2X4 + W i a : ; + WoX6 

W7Xe , ~ , - . , , . - . ,— , 

+105X1 + 104X7 + WjXo + 

107X5 + IU7X3 + UI7X2 + WGXO + UI6X4 + 106X3 

+ W5X7 + 1«5X5 + 105X4 + IO5X0 + 104X6 + IO4X5 + IO4X1 

+1113X7 + W3X6 + M3X2 + W2X7 + 102X3 + M1X4 + W0X5 +11I3X7 + W3X6 + M3X2 + W2X7 + 102X3 + M1X4 + 100X5 

UI7X7 + IO7X4 + 107X2 + 107X1 + 106X5 + IO6X3 + IO6X2 

+105X0 + 105X4 + 105X3 + 104X7 + 104X5 + 104X4 + 1O4X0 + UI3X6 

+ UI3X5 + IO3X1 + 102X7 + 102X6 + 1»2X2 + 101X7 + W1X3 + 100X4 

107X7 + 107X6 + IO7X5 + 107X4 + IO7X3 + IO7X1 + IO6X7 + 106X6 107X7 + IO7X6 + IO7X5 + 107X4 + IO7X3 + IO7X1 + IO6X7 + 106X6 

+ 106X5 + IO0X4 + 106X2 + IO5X7 + IO5X6 + IO5X5 + IO5X3 + IO4X7 + IO4X6 

+ IO4X4 + IO3X7 + 103X5 + IO3X0 + 102X6 + IO2X1 + IO1X7 + IO1X2 + 100X3 

IO7X6 + IO7X3 + 107X2 + IO6X7 + IO6X4 + UI6X3 + IO5X5 + IO5X4 

+ IO4X6 + IO4X5 + 103X7 + IO3X6 + IO2X7 + IO2X0 + lOlXl + IO0X2 

IO7X7 + IO7X5 + IO7X2 + IO7X1 + 106X6 + 100X3 + 106X2 

+ IO5X7 + IO5X4 + IO5X3 + IO4X5 + IO4X4 + IO3X6 

+IO3X5 + IO2X7 + IO2X6 + IO1X7 + lOiXo + W Q X I 

107X6 + IO7X5 + IO7X1 + IO6X7 + 106X6 + IO6X2 

\ +105X7 + IO5X3 + IO4X4 + IO3X5 + IO2X6 + 101X7 + lOoXo / 

The above matrix equation gives seven multivariate quEidratic equations over GF(2) 
for AES inversion. A further equation is given with high probability. 
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As also descr ibed in Sect ion 5.2, we tiave 

{Cn,S + I)x = 0 

where t h e vector {CwS + I)x is given by 

/ tU7X6 + WTXi + U17I2 + tujxo + wexj + u)6S4 + waX3 + 11)5X7 + Wf,xe \ 

+1052:3 + W^Xl + U)4X5 + «J4a;4 + 103X7 + 1032:4 + WiX2 + 102X0 + UI2I5 

+101X5 + 101^3 + Mpa;? + mpXG + a:? -r ioix5 -r 101X3 T 1JQXJ T wpxa T XJ 

•!U7Xo + IU7X3 + «J7X2 + IUGXO + W0X5 + «'6X2 + t«6Xo + W^Xj + W5X4 

+105X3 + IO4X7 + 104X6 + IO4X3 + 104X1 + IO3X5 + 103X4 + 102X7 + IO2X4 

+W2X2 + toixe + 101X5 + 100x5 + 100x3 + XG 

107X7 + 107X5 + 107x4 + 107x1 + IOGXG + 10GX3 + 1O6X2 + W5XG + 105X5 (07x7 ~r 107x5 - r 1U7X4 - r uj-rxi - r (OGXG - r 106x3 -r U;GX2 T (^^SXG T a ;5x5 

+105X2 + 105X0 + 104X7 + 104X4 + 104X3 + 103X7 + i03Xe + 103X3 + 103X1 

+ 1 0 2 x 5 + 102X4 + 101X7 + 101X4 + 101X2 + lOpXe + 100X5 + X5 

107X7 + IO7X5 + 107X2 + IO7X1 + IO6X7 + IO6X5 + 1«6X4 + I O G X I + IO5X6 

+105X3 + 105X2 + 104X6 + 104X5 + 104X2 + 1O4X0 + 103X7 + 103X4 + 103X3 

+102X7 + 102X6 + 102X3 + 102X1 + 101X5 + 101X4 + 100X7 + 100X4 + 100X2 

+ X 4 

IO7X5 + IO7X4 + IO7X3 + IO7X2 + IO6X5 + IOCX4 + IO6X3 + 106X2 + IO6X1 

+105X6 + 105X5 + 105X4 + 105X3 + 104X6 + 104X5 + 104X4 + 104X3 + 104X2 

+103X7 + 103XC + 103X5 + 103X4 + 103X0 + 102X7 + 102X6 + 102X5 + 102X4 

+IO2X3 + IO1X7 + lOlXG + IO1X5 + lOlXl + 100X7 + lOoXc + IO0X5 + 100X4 

+ X3 

IO7X7 + IO7XG + IO7X5 + IO7X4 + IO7X3 + 107X1 + 105X7 + IO6X5 + IOGX2 

+ IO5X7 + 105X6 + IO5X5 + IO5X4 + IO5X2 + 104X6 + IO4X3 + IO3X7 + 103X6 

+ IO3X5 + 103X3 + IO2X7 + IO2X4 + IO2X0 + IO1X7 + I O I X G + 101X4 + IO0X5 

+IO0X1 + X2 

IO7X6 + UI7X4 + IO7X1 + IO6X7 + 106X6 + IO6X5 + IO6X4 + IOGX3 + IO6X1 

+IO5X7 + IO5X5 + IO5X2 + IO4X7 + IO4XG + IO4X5 + IO4X4 + IU4X2 + IO3X6 

+IO3X3 + IO2X7 + IO2X6 + 102X5 + 102X3 + K)lX7 + IO1X4 + lOlXo + 10oX7 

+IO0X6 + IO0X4 + Xl 

IO7X7 + '(O7X4 + 107X3 + IO6X7 + 106XG + IO6X3 + I O G X I + IO5X5 + IO5X4 

+104X7 + IO4X4 + IO4X2 + IO3X6 + IO3X5 + IO2X5 + IO2X3 + -(O1X7 + I O I X G 

\ +'iOoXG + 100X4 + lOoXo + Xo / 

Th i s gives eight more mul t iva r ia te q u a d r a t i c equa t ions over G F ( 2 ) for A E S inversion. 

W e also have 

(C-^.S + / ) io = 0 

where iCxS + I)x is given by t h e above vector wi th 10 and x in terchanged. This gives 

eight further mul t iva r ia te quad ra t i c equa t ions over GF(2 ) for A E S inversion. 



Appendix B 
Augmented Linear Diffusion Matrices 

The augmented linear diffusion matrix M witli respect to tiie standard basis is 
given on the next two pages. We use . to represent 0 in this matrix, and the 128-
bit inputs to the augmented linear diffusion layer are viewed as column vectors. We 
note that M is a block matrix built from three different nonzero submatrices, which 
correspond to the transformations consisting of the GF(2)-linear map followed by 
multiplication by 1, 0 or 6 + 1 (01,02,03 in hexadecimal) respectively. 

We then give the augmented linear diffusion matrix P"^MP, where the matrix P 
is given in [88]. This is just the augmented linear diffusion matrix M with respect 
to a different basis. We again use . to represent 0 in this matrix, which acts on 
column vectors, The matrix P^^MP is a block diagonal matrix, and line breaks in 
the presentation of this matrix represent the division into fifteen invariant subspaces. 
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Augmented linear diffusion matr ix M 

.11111..1. . , 
l i . l U . U . l . 
l U U l l . l l . . 

.1, . .11. . 1 . . : 
. .1. ,1111.1. 

111.111 

m i l . . 
11111. 
m i l 
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.11111., 

! ! . i 
1 . . , 
11. . 
111. 
1111 

.111 

1111 
1111 

.11111. 

111.111 
. n u l l 

.111111.,.11 

. .11 

11., 

.. . 1 . ,1 
m i l . . , 
m i l . . . 
m i l . . 

.111.1.1 . , . 
1. . 1 . . 

. .11111. . . 

. . . m i l . . . 

. . . . m i l . 
,,111,111.. 

n i l : 
.11] 1 1 . 

1. .1 
.1 
l . , . , l . 

.1.1,111 

.1..1111 

n i l . 
m i l 

,1111 

.. ,11 
1.. .1 
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Augmented linear diffusion matrix P~^MP 

.1 1 , , 

.1 1, 

. 1 1 

. . . 1 1 . . . 

. 1 1. 

. .1 1 

,1 1 , . 
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A p p e n d i x C 
E q u a t i o n Sys t em for SR(2,2,2,4) over GF(2'^; 

We illustrate the style of the equation system over GF(2 ) for the AES by giving 
the equation system over GF(2'') for the small scale variant SR(2, 2, 2,4) of the AES 
(Section 3.3 and [22]). These are BES-style equations for which we assume that 
0-inversions do not occur. 

Component j and conjugate I for the plaintext, ciphertext and the key (also used 
as the initial round key) are denoted by pji, Cji and koji respectively. We regard the 
two rounds as round one and round two. We denote the input and output of the 
inversion and the subkey used in round i for component j and conjugate I by Wtji, 
Xiji and kiji respectively. 

Input/Output 
Plaintext 
Ciphertext 

State 
Inversion input 
Inversion output 

Key 
Subkey 
Dummy 

0^(2") Variable | Round i | Component j | Conjugate I 

P]i 

Cjl 

0,1,2,3 
0,1,2,3 

0,1,2,3 
0,1,2,3 

Wijl 1,2 
1,2 

0,1,2,3 
0,1,2,3 

0,1,2,3 
0,1,2,3 

kijl 

Sijl 

0,1,2 
0,1 

0,1,2,3 
0,1,2,3 

0,1,2,3 
0,1,2,3 
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wJioo + poo + A:ooo 
wioi + poi + fcooi 
«Jl02 + P02 + fco02 

U)103 + P03 + fc003 

WHO +PIO + koio 
u i i u + P 1 1 + koii 

UI112 +Pl2 + koi2 

W l l 3 + P l 3 + fcoi3 

W120 + P20 + ko20 

Wl2l + P2I + ko2l 

VJ122 + P22 + A;o22 

10123 + P23 + fco23 

W13O + P30 + fc030 

Win + P31 + A;o3i 

Wl32 + P32 + fc032 

W133 + P33 + fc033 

Inversion and Conjugacy Relations: Rounds 1 and 2 

Wioo + J^ io i 

1«200 + «'201 

IWlOl + " '102 

'"'201 + W202 

''«102 + Wwi 

w'202 + 1"203 

" '103 + WlOO 

" '203 + " '200 

WllO + " ' 1 U 

" '210 + " '211 

•u/fll + '10112 

" '211 + "1212 

" '112 + M 1 1 3 

"1212 + "1213 

" '113 ^ - w i i i o 

" '213 + W 2 1 0 

10120 + " ' 1 2 1 

""220 + " '221 

" '121 + ""122 

10221 + " ' 2 2 2 

•0)122 + " '123 

^ 2 2 2 + " '223 

" '123 + " '120 

" '223 + "1220 

" '130 + " '131 

wiso + ^231 
^ 1 3 1 + " '132 

""231 + "1232 

" '132 + " '133 

"1232 + "1233 

""ISS + " '130 

" '233 + " '230 

"'looa^ioo + 1 
102003:200 + 1 

"'1012:101 + 1 

" '201X201 + 1 

" ' I02a ; i02 + 1 

^202X202 + 1 

"'1032:103 + 1 

" '203X203 + 1 

"'110X110 + 1 

^210X210 + 1 

" '111X111 + 1 

"1211X211 + 1 

"'112X112 + 1 

"'212X212 + 1 

" '113X113 + 1 

" '213X213 + 1 

"1120X120 + 1 

" '220X220 + 1 

" '121X121 + 1 

"^221X221 + 1 

" '122X122 + 1 

"'222X222 + 1 

" '123X123 + 1 

" '223X223 + 1 

" '130X130 + 1 

" '230X230 + 1 

" '131X131 + 1 

"1231X231 + 1 

"^132X132 + 1 

"1232X232 + 1 

"1133X133 + 1 

" '233X233 + 1 

2 
Xioo + Xio i 

X200 + X201 

x ? o i + X102 

X201 + X202 

X102 + Xl03 
2 . 

X202 + X203 

X103 + X 1 0 O 

X203 + X2OO 

X u o + X 1 1 1 

X210 + X2II 

X l U + X 1 1 2 
2 , 

X2II + X2I2 

X112 + X 1 1 3 

+ 1 X212 + X213 

X l l 3 + X u o 

X213 + X 2 1 0 

X?20 + X12I 
X220 + X22I 

X12I + X 1 2 2 

XI21 + X222 

X122 + Xl23 

X222 + X223 

X123 + X12O 
2 I 

X223 + X22O 

X?30 + Xl31 

x i s o + X231 

Xl31 + Xl32 

X23I + X232 

X?32 + X133 

X232 + 2:233 

Xl33 + Xl30 

X233 + X230 
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Diffusion Relations: Round 1 

W200 + FXloo + 3a:ioi + 7a;io2 + Fa;io3 + Aiiso + 2a:i3i + Bxx32 + Axiaa + ^loo + 6 

10201 + Axioo + Aa:ioi + 5a:io2 + 6a:io3 + 8x130 + 8x131 + 4xi32 + 9xi33 + 'cioi + 7 
W202 + 7X100 + 8X101 + 8X102 + 2X103 + DXl30 + CXi3l + CXl32 + 3X133 + £̂102 + 6 
W203 + 4X100 + 6X101 + Cxi02 + Cxi03 + 5X130 + EXl3l + FXl32 + FX133 + A;i03 + 7 
W210 + AXlOO + 2X101 + BX102 + AX103 + FXISO + 3X131 + 7X132 + FX133 + fclio + 6 
UI21I + 8X100 + 8X101 + 4X102 + 9X103 + AX130 + AXl31 + 5X132 + 6X133 + fclll + 7 
W212 + DXloo + Cxioi + CXl02 + 3X103 + 7X130 + 8X131 + 8X132 + 2X133 + fcll2 + 6 
W213 + SXIOO + EXIOI + FX102 + FXl03 + 4X130 + 6X131 + Cxi32 + CX133 + A:il3 + 7 
W22O + AXllo + 2X111 + BX112 + AXll3 + FX12O + 3X121 + 7X122 + FX123 + fel20 + 6 

W221 + 8x110 + 8x111 + 4X112 + 9x113 + Axi2o + Axi2i + 5X122 + 6x123 + fci2i + 7 

W222 + DXuo + CXIII + CX112 + 3X113 + 7X120 + 8X121 + 8X122 + 2X123 + *;i22 + 6 
1«223 + 5X110 + EXlil + FX112 + FXll3 + 4X120 + 6X121 + CXl22 + CXl23 + 0̂123 + 7 

U1230 + FXIIO + 3X111 + 7X112 + FX113 + AX120 + 2X121 + BX122 + AXl23 + kl30 + 6 

W231 + AXllo + AXIU + 5X112 + 6X113 + 8X120 + 8X121 + 4X122 + 9X123 + A:i31 + 7 

W232 + 7X110 + 8X111 + 8X112 + 2X113 + DXl20 + CXl21 + CXl22 + 3Xl23 + £̂132 + 6 
1«233 + 4X110 + 6X111 + CX112 + CXll3 + 5X120 + EXl21 + FXl22 + FXl23 + ^133 + 7 

Diffusion Relations: Round 2 

Coo + FX20O + 3X201 + 7X202 + FX203 + AX230 + 2X231 + BX232 + AX233 + ^200 + 6 

Coi + AX200 + AX201 + 5X202 + 6X203 + 8X230 + 8X231 + 4X232 + 9X233 + feoi + 7 

C02 + 7X200 + 8X201 + 8X202 + 2X203 + DX230 + CX231 + CX232 + 3X233 + ^202 + 6 

C03 + 4X200 + 6X201 + CX202 + CX203 + 5X230 + EX231 + FX232 + FX233 + ^203 + 7 

Clo + AX200 + 2X201 + BX202 + AX203 + FX230 + 3X231 + 7X232 + FX233 + felO + 6 

Cll + 8X200 + 8X201 + 4X202 + 9X203 + AX230 + AX231 + 5X232 + 6X233 + fell + 7 

Cl2 + DX200 + CX201 + CX202 + 3X203 + 7X230 + 8X231 + 8X232 + 2X233 + ^212 + 6 

Cl3 + 5X200 + EX201 + FX202 + FX203 + 4X230 + 6X231 + CX232 + CX233 + ^213 + 7 

C20 + AX210 + 2X211 + BX212 + AX213 + FX220 + 3X221 + 7X222 + FX223 + ^220 + 6 

C21 + 8X210 + 8X211 + 4X212 + 9X213 + AX220 + AX221 + 5X222 + 6X223 + ^ 2 1 + 7 

C22 + DX210 + CX211 + CX212 + 3X213 + 7X220 + 8X221 + 8X222 + 2X223 + fc222 + 6 

C23 + 5X210 + EX211 + FX212 + FX213 + 4X220 + 6X221 + CX222 + CX223 + ^223 + 7 

C30 + FX210 + 3X211 + 7X212 + FX213 + AX220 + 2X221 + 8X222 + AX223 + A:230 + 6 

C31 + AX210 + AX211 + 5X212 + 6X213 + 8X220 + 8X221 + 4X222 + 9X223 + ^231 + 7 

C32 + 7X210 + 8X211 + 8X212 + 2X213 + DX220 + CX221 + CX222 + 3X223 + ^ 3 2 + 6 

C33 + 4X210 + 6X211 + CX212 + CX213 + 5X220 + EX221 + FX222 + FX223 + ^233 + 7 
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Key Schedule Conjugacy Relations 

'CoOl + ^002 

fco02 + ^=003 

'î ooa + '̂ ooo 
fcoio + '^oii 
kon + koi2 
'=012 + fcoi3 

koi3 + '=010 

^020 + '=021 

'=021 + '=022 

'=022 + '=023 

'=023 + '=020 

'=030 + '=031 

'=031 + '=032 

'=032 + '=033 

'=033 + '=030 

f^lOl 

'=102 

'=103 

^=110 

fc|ll 

'=112 

^=113 

'=120 

fcl21 
'=122 

'=123 

^130 

' t i s ! 

'=132 

+ '=101 

+ '=102 

+ '=103 

+ '=100 

+ '=111 

+ fcll2 
+ '=113 

+ '=110 

+ '=121 

+ '=122 

+ '=123 

+ '=120 

+ '=131 

+ '=132 

+ '=133 

+ '=130 

'=200 

'=201 

'=202 

'=203 

'=210 

'=211 

'=212 

'=213 

'=220 

'=221 

'=222 

'=223 

'=230 

'=231 

'=232 

'=233 

+ '=201 

+ '=202 

+ '=203 

+ '=200 

+ '=211 

+ '=212 

+ '=213 

+ '=210 

+ '=221 

+ '=222 

+ '=223 

+ '=220 

+ '=231 

+ '=232 

+ '=233 

+ '=230 

Key Schedule Inversion and Conjugacy Relations 

'=030*000 + 1 

'=03X8001 + 1 

'=032 8002 + 1 

'=0338003 + 1 

'=0208010 + 1 

'=0218011 + 1 

'=0228012 + 1 

'=023*013 + 1 

8000 + 8001 
2 1 

8001 + 8002 
2 1 

8002 + 8003 

8003 + 8000 
2 1 

8010 + 8011 
2 

8011 + SOI2 
2 ( 

8012 + 8013 
2 1 

8013 + 8010 

^11308100 + 1 

'=1318101 + 1 

'=1328102 + 1 

'=133 8103 + 1 

fcl20SllO + 1 

'=1218111 + 1 

'=1228112 + 1 

'=0238113 + 1 

8100 + 8101 
2 1 

8l01 + 8102 
2 1 

8102 + 8103 
2 1 

8103 + 8100 
2 1 

8110 + 8111 

S i l l + 8112 
2 ( 

8112 + 8113 

8113 + S l i o 

Key Schedule Diffusion Relations: Round 1 

'=100 + '=000 

'=101 + '=001 

'=102 + '=002 

'=103 + '=003 

'=110 + '=010 

'=111 + '=011 

'=112 + '=012 

'=113 + '=013 

'=120 + '=020 + '=000 

'=121 + '=021 

'=122 + '=022 

'=123 + fco23 

'=130 + '=030 

'=131 + '=031 

'=132 + '=032 

+ '=001 

+ '=002 

+ '=003 

+ '=010 

+ '=011 

+ '=012 

^=133 + '=033 + '=013 

+ 58000 + l8001 + C8002 + 58003 + 7 

+2sooo + 2sooi + l8oo2 + Fsoo3 + 6 
+ ASOOO + 48001 + 48002 + lS003 + 7 

+ lS000 + 88001 + 38002 + 3S003 + 6 

+ 58010 + l 8 o i l + C8012 + 58013 

+ 28010 + 2 S o i l + l8012 + F8013 

+ AS010 + 48011 + 4S012 + l8013 

+ 18010 + 8*011 + 3S012 + 38013 

+ 58000 + I s o o i + C8002 + 5S003 + 7 

+ 2S000 + 2S001 + l8002 + F8003 + 6 

+Asooo + 4sooi + 4soo2 + lso03 + 7 
+ 18000 + 88001 + 38002 + 38003 + 6 

+ 5S010 + l 8 o i l + CS012 + 5*013 

+ 2*010 + 28011 + l8012 + F*013 

+A8010 + 48011 + 48012 + 18013 

+ 18010 + 8*011 + 3*012 + 3*013 
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Key Schedule Diffusion Relations; Round 2 

feoo + fcioo +5sioo + Isioi + Csio2 + 5sio3 + 4 
feoi + fcioi +2sioo + 2sioi + lsio2 + Fsio3 + 3 

k202 + kw2 +AS100 + 4sioi + 4S102 + 1S103 + 5 

=̂203 + fcl03 +1S100 + 8Sl01 + 3S102 + 3Sl03 + 2 
felO + fclio +5S l l0 + I S l l l + C,Sll2 + 5A'II3 
fell + fciii +2siio + 2siii + lsii2 + Fsii3 

^212 + fcll2 +A.S110 + 4Sl l l + 4,Sll2 + 1S113 

felS + fcll3 + lS l lO + SSlll + 3Sll2 + 3Sli3 

/C220 + fcl20 + kloo +5.S100 + ISlOl + CS102 + 5S103 + 4 
/C221 + fcl21 + fcloi +2Sl00 + 2Sl01 + lSl02 + Fsio3 + 3 

fc222 + A:i22 + fcl02 +Asioo + 4sioi + 4si02 + 1S103 + 5 

^223 + fcl23 + fcl03 +1S100 + 8S101 + 3si02 + 3Sl03 + 2 
^230 + fcl30 + fcllO +5S l l0 + I S l l l + CSll2 + 5Sll3 
^231 + fcl3l + kill +2Sl l0 + 2 s i i i + l,Sii2 + Fs i i3 

^232 + A:i32 + fcll2 +ASll0 + 4Sl l l + 4A-112 + lS l l3 

^233 + fcl33 + fcll3 + lS l lO + 8 S u i + 3Sll2 + 3Sli3 
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