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Preface

It is now more than five years since the Belgian block cipher Rijndael
was chosen as the Advanced Encryption Standard (AES). Joan Daemen
and Vincent Rijmen used algebraic techniques to provide an unparalleled
level of assurance against many standard statistical cryptanalytic tech-
niques. The cipher is a fitting tribute to their distinctive approach to
cipher design. Sincc the publication of the AES, however, the very same
algebraic structures have been the subject of increasing cryptanalytic
attention and this monograph has been written to summarise current
research. We hope that this work will be of intercst to both cryptogra-
phers and algebraists and will stimulate futurc rescarch.

During the writing of this monograph we have found reasons to thank
many people. We are especially grateful to the British Engineering and
Physical Sciences Research Council (EPSRC) for their funding of the
rescarch project Security Analysis of the Advanced Encryption System
(Grant GR/S42637), and to Susan Lagerstrom-Fifc and Sharon Palleschi
at Springer. We would also like to thank Claus Diem, Maura Paterson,
and Ludovic Perret for their valuable comments. Finally, the support
of our families at home and our colleagues at work has been invaluable
and particularly appreciated.

May 2006 Carlos Cid, Sean Murphy, and Matt Robshaw



Chapter 1

INTRODUCTION TO THE AES

In January 1997, the U.S. National Institute of Standards and Tech-
nology (NIST) announced the impending development of an Advanced
Encryption Standard (AES). The intention was that it would:

...specify an unclassified, publicly disclosed encryption algorithm capable of
protecting sensitive government information well into the next century {94].

To achicve this goal NIST cstablished an open competition. Fifteen
block ciphers from around the world werc submitted as candidates, with
the initial field being narrowed to a set of five in the first round. From
these five candidates the block cipher Rijndacl [37], designed by Belgian
cryptographers Joan Daemen and Vincent Rijmen, was chosen as the
AES. The AES was finally published as the Federal Information Pro-
cessing Standard FIPS 197 [95] in November 2001.

1. Background

The AES is a block cipher and therefore encrypts and decrypts blocks
of data according to a secret key. The AES is intended to replace the
Data Encryption Standard (DES) [92], and gradually to replace Triple-
DES [96]. The DES and Triple -DES have been remarkably successful
block ciphers and have been used in millions of systems around the
world. Even after thirty years of analysis, the most practical attack
remains exhaustive key search. However, the restricted key and block
size of the DES, along with its relatively poor performance in software,
make a replacement incvitable.

The AES has a very different structure to the DES. Whilst the DES
is said to be a Feistel cipher [50], the AES is said to be a substitution
permutation (SP-)network [113]. Both the AES and the DES are iterated
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ciphers, which means that a certain scquence of computations, consti-
tuting a round, is repeated a specified number of times. The operations
used within the AES are byte-oriented and the cipher offers good per-
formance in hardware, limited byte-oriented processors, and modern 32-
bit and 64-bit machines. By contrast, the operations used in the DES
are fundamentally bit operations. As a consequence the DES offers out-
standing performance in hardware but offers generally poor performance
in most software environments.

The AES and the DES arc closcly related in terms of their underlying
design philosophies. Both rely heavily on the ideas of Shannon [113]
and the concepts of diffusion and confusion. Whilst most block ciphers
follow these principles, few do so as clearly as the AES and the DES. The
aim of diffusion is to spread the influence of all parts of the inputs to a
block cipher, namely the plaintezt and the key, to all parts of the output,
the ciphertext. Diffusion is provided in both the AES and DES by the
use of permutations. The aim of confusion is to make the relationship
between plaintext, ciphertext, and key complicated. In both the AES
and DES, confusion is provided by very carefully chosen substitution or
S-bozes. These make local substitutions of small sub-blocks of data and
these local changes are then spread by the diffusion transformations.

From the start of the AES selection process there was a significant
level of support for Rijndacl. Whilst Rijndacl had a relatively unfamiliar
design, there had been two immediate predecessors. The block cipher
SHARK was proposcd in 1996 [108] and featured all the components later
used in Rijndaecl. Somc changes to SHARK would lead a year later to
thoe block cipher SQUARE [36]. The proposal for SQUARE also includes a
discussion of the square attack for this type of block cipher.

The initial popular support for Rijndael increased in the second round
of the AES selection process. The significance of the design strategy
for Rijndacl was clear on two counts. Firstly, the transparent design
permitted quick and accurate sccurity estimates to be made for Rijndacl
against standard attacks. Sccondly, the byte-wise design helped give
Rijndacl a versatile performance characteristic. Rijudael was generally
perceived to be a worthy sclection as the AES. As a bricf review of the
statc of the AES five years after its sclection concludes:

. there have been few cryptanalytic advances despite the efforts of many
researchers. The most promising new approach to AES cryptanalysis remains
speculative, while the most effective attack against versions of the AES with
fewer rounds is older than the AES itself [42].

This “new approach” is algcbraic in naturc and is the subject of this
monograph.
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2, Algebraic Perspectives

With hindsight it is a little surprising that the algebraic properties
of Rijndael were not discussed more during the AES sclection process.
Many observers noted that the structured design of Rijndael might have
interesting side-effects, most obviously the ongoing development of ded-
icated attacks such as the square [51] and bottleneck [55] attacks. How-
ever, the algebraic foundations of Rijndael were not explored in detail.

An carly public comment about Rijndacl with such an algebraic per-
spective [88] appeared towards the end of the AES selection process.
Other rescarch around this time [52, 67, 111} made similar points. The
transparent structurc of the AES and its strong algebraic foundations
give an interesting framework for analysis. In particular, there are many
alternative representations of part or all of the cipher. Some repre-
scntations provide interesting insights into the intcraction of different
operations. Others provide implementation benefits, either in terms of
security with regards to side-channcl cryptanalysis or in terms of per-
formance improvements. However, some representations, such as those
that have sought to represent the process of AES encryption as a system
of equations, may point the way to futurc breakthroughs.

Whilst little research was undertaken about the algebraic properties
of Rijndael during the AES selection process itself, there has been much
rescarch since. One intriguing recent development has been the interplay
between the cryptanalysis of symmetric ciphers and that of asymmetric
ciphers. Due to the fundamental reliance of asymmetric cryptography
on computational algebra and number theory, asymmetric cryptanalysis
inevitably focuses on the manipulation of algebraic structures. However,
this is a very new area for symmetric cryptanalysis, where recognising
statistical patterns of bits has traditionally been the most cffective form
of cryptanalysis. In fact, the overlap between symmetric and asymmetric
cryptanalysis is very specific. Several asymmetric cryptosystems have
been proposed that depend for their security on the difficulty of solving
a large system of multivariate equations of low degree. Similarly, the
process of AES cncryption can also be expressed in this way. Thus
the difficulty of solving such a multivariate equation system is directly
related to the security of the AES.

3. Overview of the Monograph

The purposec of this monograph is to provide both an overview and
more background to the algebraic analysis of the AES. In Chapter 2 we
give the required mathematical foundations. A description of the AES
follows in Chapter 3 along with a description of small scale variants
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to encourage practical experimentation. Chapter 4 considers structural
aspects of the AES and the use of different representations. Chapters 5
and 6 consider how we might represent an AES encryption as a system
of equations and the possible methods of solution for such systems.
Although we provide a full bibliography, the sources below are partic-
ularly helpful. A thorough overview of mathematical cryptology is given
in [80]. Unsurprisingly, the most complete background to the evolution
and theoretical underpinnings of the AES comes from the designers [35,
37, 107], most particularly in the book The Design of Rijndael [39].
Other surveys of the AES arc available. An enjoyable scrics of articles
surveying both the DES and the AES is given in [69-71], and a brief
overview of the first five years of the AES is provided by [42]. The
ECRYPT European Network of Excellence gives a comprehensive review
of the AES in The State of the Art of AES Cryptanalysis [43], whilst the
AES LOUNGE [44] is an online repository of information about the AES
covering many non-algebraic aspects of cryptanalysis of the AES as well
as its implementation. The AES is formally described in FIPS 197 [95].



Chapter 2

MATHEMATICAL BACKGROUND

This chapter presents the important mathematical definitions and
concepts required in this monograph. They arc prescnted in a logical
order, with each definition building on earlier concepts. However, the
broad goals of the analysis presented in this monograph should be rea-
sonably clear with only a passing acquaintance of the mathematics in
this chapter. For more background and context to this mathematical
material, we recommend the following references [23, 33, 57-59, 74, 97].

1.  Groups, Rings, and Fields

Groups, rings, and ficlds constitute the basic structures of abstract
algebra. They arc also the basic algebraic structures required for the
definition and the algebraic analysis of the AES.

Groups

DEFINITION 2.1 Let G be a non-cempty sct with a binary operation
o:G x G — G. We say that (G, o) is a group if the following conditions
hold.

m The operation o is associative, that is (g1 0 g2) 0 g3 = g1 0 (g2 0g3) for
all g1,92,93 € G.

w There cxists an element ¢ € G such that eog = goe = ¢ for all
g € G. This clement e is unique and is called the identity element.

m For cvery g € G, there exists a unique clement g7! € G such that
gog ' =g log=-e This clement g~! is called the inverse of g.

The order of a group (G, o) is the cardinality of the set G and is often
denoted by |G). If the order of (G, o) is finite, we say that G is a finite



6 ALGEBRAIC ASPECTS OF THE AES

group. Similarly, we say that an clement ¢ € G has finite order if there
exists a positive integer m such that go... o g = g™ = e. In this casc,
the least such integer m is called the order of g and is denoted by o(g),
and so the inverse element g1 = ¢°(~1, For a finitc group G, the order
of any element divides the order of the group G.

DEFINITION 2.2 The group (G, o) is said to be an abelian or commuta-
tive group if gog = g’ og for all g, ¢’ € G.

The group operation o is usually clear from the context. When this is
the case, the symbol o is omitted and the group (G, o) denoted by G.

ExaMPLE 2.3 The set of integers Z under the operation of addition
forms an abelian group. Similarly, if n is a positive integer, the set of
integers Z, = {0,...,n — 1} under the operation of addition modulo n
forms an abcelian group of order n. a

EXAMPLE 2.4 The set of integers Zy, = {1,...,p — 1} under the opcra-
tion of multiplication modulo p forms an abelian group if p is prime. O

EXAMPLE 2.5 Suppose that G and Ga are groups, then G = Gy x Gy
is a group with operation defined as (g1, g2) © (¢, 95) = (914}, g295). The
group G is known as the direct product of G1 and Gy. a

A non-empty subset H C G is called a subgroup of G if H is itself a
group under the same operation. For a finite group, Lagrange’s Theorem
states that the order of any subgroup divides the order of the group. A
subgroup H of G is called a normal subgroup of G if g~*hg € H for
all g € G and h € H. The notation H < G and H < G is used to
denote that A is a subgroup of G and that H is a normal subgroup of G
respectively. A group that has no non-trivial normal subgroups is called
a simple group.

If H is a subgroup of G, then the right coset of H in G defined by
g € G is the st Hg = {hglh € H}. The set of right cosets, {Hglg € G},
forms a partition of the elements of G. We can also define left cosets of
H in G in a similar manner. The set of right coscts of H in G and the
set of left coscts of H in G have the same cardinality. This cardinality
is known as the indez of H in G and is denoted by [G : H). If H is
a normal subgroup of G, then the right coset and left coset defined by
any g € G are identical, and Hg = gH is simply called the coset of H
in G defined by g € G. In this case, the sct of all cosets of H in G
forms a group with binary operation (Hg, Hg') — Hgg' for all g,¢' € G.
This group is called the quotient group of G by I . This group has order
[G : H] and is denoted by G/H.
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DEFINITION 2.6 Let S be a non-cmpty subsct of G. Then the group
generated by S is defined as the set of all finite products of form gjo.. .ogx,
where either g; € S or g;l es.

The group gencrated by S is denoted by (S) and is the smallest subgroup
of G which contains S. If S = {g}, then the group (S) = (g) gencrated
by a single clement g € G is called the cyclic group generated by g. If g
has finite order, then (g) = {g,9°,... , g1 e},

A permutation of a non-empty set X is a bijective mapping X — X.
The set of permutations of X', under the operation of composition, forms
a group known as the symmetric group of X. We denote this group by
Sy. If X is finite with cardinality n, this group is also known as the
symmetric group on n elements and is denoted by S,. The order of the
group S, is n!. An element of the group 5, that permutes two clements
of X and leaves the remaining clements fixed is called a transposition. An
element g € Sy, is said to be an even permutation if it can be expressed as
a product of an even number of transpositions, otherwise g is said to be
an odd permutation. The subset of S, consisting of all cven permutations
is a normal subgroup of S,,, known as the alternating group on n clements
and is denoted by A,,. For n > 1, the order of A, is %n!‘ Furthermore,
Ay, is a simple group for n # 4.

DEFINITION 2.7 Let X be a non cmpty sct and G a group. A group
action of G on X is a mapping G X X — X, denoted by (g,2) = g -z,
such that the following two conditions hold.

m If e is the identity of G, then e - x = z for cvery z € &,

w g (¢ x)=(9¢) zforall g,¢ € Gandforallz e X.

If therc is a group action of a group G on a set X', we say that the
group G acts on the set X. An examplc of a group action is the action
of the symmetric group Sy on the set X defined by (g,z) + g(z) for all
permutations g of Sy and z € &

If G is a group acting on the set X, then the orbit of x € X is defined
tobe {g-z | g € G} C X. The orbits of X form a partition of X. The
stabilizer of an element z € X is defined to be G, = {9 € Glg -z = =z}
and is a subgroup of G. The number of elements in the orbit of z € X
is the index [G : G]. Furthermore, if Fiz(g) denotes the number of
elements of X' that are fixed by g € G, then the number of orbits of G

on X is .
— Fq .
@ > Fix(g)
g9€G
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If the action of G on X has only one orbit, then for any pair of clements
z,%' € X there exists ¢ € G such that g -z = /. In this casc the
action of G on X is said to be transitive. Furthermore, if for any pair of
m-tuples (x1,...,2Zm), (2},...,2},) € X™ with distinct entries (z; # x;
and @ # x}) there exists g € G such that g - z; = a;, then the action is
said to be m-transitive. The action is said to be sharply m-transitive if
such an clement g € G is unique.

If G acts on a sct X, then Y C X is called a block of G if for cvery
g € G, we have either g(¥) = Y or g(¥)NY = @. The group G is said to
be primitive if it has no non-trivial blocks, and imprimitive otherwisc.

ExXAMPLE 2.8 The symmetric group S,, acting on a sct of n clements
is a primitive and sharply n-transitive group. The alternating group A,
acting on a sct of n clements is a primitive and sharply (n— 2)-transitive
(n > 2) group. O

DEFINITION 2.9 Let (G, 0) and (H, ) be groups. A mapping ¢:G — H
is a (group) homomorphism if, for all g,¢’ € G,

dlgog’) = ¢lg) - d(g).

An injective homomorphism is called a monomorphism and a surjec-
tive homomorphism is called an epimorphism. A bijective homomor-
phism ¢: G — H is called an isomorphism, and the groups G and H are
saild to be isomorphic, denoted by G = H. An isomorphism from G to
itself is called an automorphism of G.

DEFINITION 2.10 If ¢: G — H is a homomorphism and ey is the iden-
tity clement of H, then the subset

ker ¢ = {g € Gl¢(g) = en}
of G is called the kernel of the homomorphism ¢.

We note that ker ¢ is a normal subgroup of G and the First Isomor-
phism Theorem states that the quotient group G/ ker ¢ is isomorphic to
the image of ¢. Furthermore, any normal subgroup H < G is the kernel
of the “natural” epimorphism G — G/H defined by g — Hg.

ExaMPLE 2.11 Let H be the group ({—1,1}, x), where x denotes the
usual opcration of integer multiplication. There exists a homomorphism
from the symmetric group S, onto H that maps every even permutation
to 1 and every odd permutation to —1. The kernel of this homomorphism
consists of all even permutations and so is the alternating group A,.
Thus the quotient group Sy, /A, is isomorphic to H. O
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Isomorphic groups have identical algebraic structure and can be re-
garded as cssentially the same algebraic object. Isomorphisms arc often
useful for solving problems that would otherwise be intractable. Thus
obtaining alternative representations using isomorphisms is a common
technique for the study and analysis of algebraic structures. We note
however that constructing isomorphisms between two algebraic struc-
turcs, and cven constructing the inverse isomorphism of a known iso-
morphism, can often be a very difficult problem.

EXAMPLE 2.12 Let p be a prime number, and Z;, 1 and Zj, denotc the
groups defined in Examples 2.3 and 2.4 respectively. The group Zy,_1 is
generated additively by the element 1 € Z,, 1, and the group Zj is gen-
erated multiplicatively by some g € Zj. Thesc groups are isomorphic,
and an isomorphism between them can be defined by m — ¢™, that is
the exponcutiation in Z*. The inversc isomorphism is known as the dis-
crete logarithm, and the calculation of the discrete logarithm is generally
believed to be a hard problem. The difficulty of computing this inverse
isomorphism is the foundation of the security of many asymmetric cryp-
tosystems, for example the Digital Signature Standard [93]. O

Rings

DEFINITION 2.13 Let R be a non-empty set with two associative binary
operations 4+, R x R — R. We say that (R, +,") is a ring (with unit)
if the following conditions hold.

w (R,+) is an abelian group.

u The operation - is distributive over +, that is for all r, 7/, 7" € R,
re(+r")y=r-r"+r- " and (' +0") v =0 v 0"

®m There is an clement 1 € Rsuch that 1-r=7r-1=rforall r € R.

The identity element of the group (R, +) is usually denoted by 0 and is
called the zero of the ring (R, +,-). The element 1 is called the identity
element of the ring (R, +, ).

DEFINITION 2.14 Thering (R, +, ) is a commutative ring if r-v' =1'-r
for all r,7’ € R, that is the operation - is commutative.

All rings considered in this monograph are commutative rings with
unit. As with groups, we often assume that the operations + and - are
clear, and we denote the ring (R, +, -) simply by R. We also often denote
r -7’ simply by 77’ for r,7’ € R.
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A commutative ring R is called an integral domain if it contains no
zero--divisors, that is v’ # 0 for all r,7' € R\ {0}. A nonzcro clement
r of a ring R is said to be invertible (or a unit) if there exists r™1 € R
such that - 771 = r~1 .9 = 1. The sct of all invertible elements of R
is denoted by R* and forms a group under multiplication known as the
group of units of R. If all nonzero clements of a ring R are invertible,
then R is called a division ring and R* = R\ {0}.

ExXAMPLE 2.15 The set of integers Z under the operations of integer
addition and multiplication forms a commutative ring. Similarly, the
set of integers Z,, = {0,...,n — 1} under the operations of addition and
multiplication modulo n forms a commutative ring. We note that Z, is
a division ring if and only if n is prime. a

DEFINITION 2.16 Let (R,+,-) be a ring and I a non cmpty subsct of
R. We say that [ is an ideal of R, denoted by I < R, if the following
conditions hold.

s (I,+) is a subgroup of (R, +).
m Forallzelandre R, z-r&€landr -z €l.

The coset of an ideal I in R defined by r € R is denoted by I +r and
defined to be the st {s + r|s € I}. The cosets of an ideal I < R form
a partition of the ring R. The set of all cosets of I forms a ring with
addition and multiplication defined by (I +r)+ (I +7) =1+ (r + ')
and (I +r)(I +7') = I+ 7' respectively. This ring is denoted by R/
and is called the quotient ring or the residue class ring modulo I.

If S is a non-empty subset of R, then the ideal generated by S is
denoted by (S) and consists of all finite sums of the form Y r;s;, wherc
r; € R and s; € S An idcal is said to be a principal ideal if it can be
generated by one clement r € R. An integral domain in which every
ideal is a principal ideal is called a principal ideal domain.

DEFINITION 2.17 If R and R’ are rings, then ¢: B — R’ is a (ring)
homomorphism if the following conditions hold.

w ¢(r+7')=¢(r) + ¢(r') for all r,7’ € R.
w G(r-r)=o(r) ¢(r) for all ;7' € R.

Different types of ring homomorphism arc defined in a similar manncr
to group homomorphisms. The kernel ker ¢ = {r € R|¢(r) = 0} of aring
homomorphism ¢: R — R’ is an ideal of R. Furthermore, the quotient
ring R/ ker ¢ is isomorphic to the image of R, and every ideal I < R is
the kernel of the “natural” epimorphism R — R/I defined by 7 +» [ 47,
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Fields
DEFINITION 2.18 A commutative division ring F is called a field.

Thus a field F is a ring (IF, 4, -) such that both (F, +) and (F\ {0}, ) are
commutative groups.

ExAMPLE 2.19 The sets Q of rational numbers, R of rcal numbers, and
C of complex numbers form fields under the usual operations of addition
and multiplication. O

EXAMPLE 2.20 The set Z, = {0,...n — 1} under addition and multi-
plication modulo an integer n is a ficld if and only if n is prime (Exam-
ples 2.3 and 2.4). O

If F is a ficld, we say that F has positive characteristic if there exists
a positive integer m such that the m-fold sum 1 +... 4+ 1 = 0. In this
casc, the least such integer m is called the characteristic of F. If there
is no such m, we say that F has characteristic zero. The infinite fields
Q, R, and € all have characteristic zero, whilst the finite field Z, has
characteristic p. In fact, all finite fields have characteristic p for some
prime p. We discuss further aspects of finite fields in Scction 2.4.

2. Polynomial Rings

Polynomial rings arc a special example of commutative ring that play
an important role in the theory of finite fields. The algebraic analysis of
the AES makes extensive use of polynomial rings.

Univariate polynomial rings

A monomial in the single variable or indeterminate x is the formal cx-
pression z* for some 7 € N, that is some non- negative power of . The
degree of the monomial z* is ¢.

DEFINITION 2.21 A univariate polynomial in the variable z over a ficld
F is a finitc lincar combination over F of monomials in z, that is a formal
expression of the form

cda:d + cd,lxd_l + ..+ 02552 + c1z + co,

where d is a non—negative integer and cy,...,co € F, with ¢4 # 0 if
d>0.

DEFINITION 2.22 The set of all univariate polynomials in the variable
over a ficld F forms a ring under the standard operations of polynomial
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addition and multiplication. This ring is a principal ideal domain called
the univariate polynomial ring over F and is denoted by Flz].

Let f(z) € F[z] be a univariate polynomial. The degree of f(z) is the
maximum integer d such that ¢z # 0, and is denoted by deg(f(z)). If

f(z) = cqrd + ..+ 1z + o,

then the summands c;z* (¢; # 0) arc called the terms of f(z), and ¢; is
called the coefficient of the monomial z*. Furthermore, we can define
the leading monomial, leading coefficient, and leading term of f(x) as
z%, cq and cgz? respectively. A polynomial f(z) is a monic polynomial
if its leading cocflicient is 1.

The evaluation of the polynomial f(z) at @ € F is defined as the
element Ef:() ciat € F and is denoted by f(a). We say that a is a root
of f(z) if f(a) = 0. A polynomial of degree d has at most d roots in F.

THEOREM 2.23 Univariate Division Algorithm. Given f(z) and g(z) €
Fz], then there exists ¢(z), r(z) € Flz] with deg(r(z)) < deg(g(z)) such
that f(z) = g(z)g(x) + r(z). The univariate polynomial r(z) is known
as the remainder of the division of f(x) by g(z).

The well-known Euclidecan algorithm to find the greatest common divisor
of two polynomials is just the repeated application of Theorem 2.23.

EXAMPLE 2.24 Suppose that
f@)=a8+2°+ 23+’ +z+1and g(x) =2 + 23 + 1
arc polynomials in the univariate polynomial ring Zs[x]. We then have
Pttt e +1=22@ 4 D)+ @ e+ 1),
so f(z) = q(z)f(z) + r(x), where g(z) = 22 and r(z) =2+ 2+ 1. O

A polynomial f(z) € Flz] of positive degree is said to be irreducible in
F[z] if there is no factorisation of the form f(z) = p(z)q(z), where p(z)
and g(z) are polynomials of positive degree in F[z]. Every polynomial
in Flz] can be written as the product of monic irreducible polynomials
and some constant in F, and this product is unique up to the order of
the factors.

EXAMPLE 2.25 Let f(z) be a polynomial in F[z] of degree d, and (f(z))
be the ideal generated by f(z). The clements of the quotient ring Z%[%?
can be written as polynomials

ag12 . aiz +ag
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in Flz] of degree less than d. In this representation of the quotient ring,
addition is simply polynomial addition. However, multiplication in the
quotient ring is defined by applying Theorem 2.23. For two polynomials
g1(z), g2(z) € Flz], we know that there exists ¢(z), r(z) € Flz] such that

91(z)ga(2) = q(2) f(z) + (),

where deg(r(z)) < deg(f(x)) = d. In this representation of the quotient
ring -{%%;, the product of gi(z) and go{x) is r(z). O

EXAMPLE 2.26 Let f(z) = 2% +2%+1 be a polynomial in the univariate
polynomial ring Zs[z]. The product of the polynomials (z*+ 23 +2%+1)
and (2% 4+ 23 + x + 1) satisfics

i

DBt +at+r+1
= (@ +2?+z+1)f(z)+0.

(zt+ 23+ 22+ Dt + 23+ 2+ 1)

Thus in the quoticnt ring R = (%f;)] , the product of these two nonzero
clements is 0, and R is not an integral domain. O

THEOREM 2.27 The quotient ring (jf([i]» is a ficld if and only if f(x) is
irreducible in Fz].

The Lagrange Interpolation Formula is a well--known method for con-
structing a polynomial based on given values for cvaluation of a function.

THEOREM 2.28 Lagrange Interpolation Formula. Given n + 1 pairs
(a:,b;) € F x F, with a; # a;, there exists a unique polynomial f(z) €
F|z] of degree at most n with f{a;) = b;. This polynomial is given by

o) =S (222).
=

Multivariate polynomial rings

Let N* = {(a1,...,a,) | @; € N} denote the set of multi-indices of size
n. A monomial in the variables 21, ..., 2, is a product of the form
aftey? . ayr,

which we denote by X, o € N*. The degree of X% is do = Y1 1 4.
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DEFINITION 2.29 A polynomial in n variables xq, ..., 2, over the field
F is a finite linear combination over F of monomials in zy, ..., z,, that
is a formal expression of the form

Z ca X,

a€EN

where ¢, € F and N is a finitc subsct of N,

DEFINITION 2.30 The sct of all polynomials in n variables over a field
F forms a ring under the standard opcrations of polynomial addition
and multiplication. This ring is called a polynomial ring over F, and for
variables z1,. .., ¢, is denoted by Flzy, ..., zy].

Let f =3 caX® € Flzy,...,z,] be a multivariatc polynomial over .
The summands ¢, X% (co # 0) are called the terms of f, and ¢, is said
to be the coefficient of X. The total degree of f is the maximum of
the degrees of all monomials of f. If all monomials of f have the same
degree d, we say that f is homogeneous of degree d.

DEFINITION 2.31 Let f € F[z;,...,z,] be a polynomial of total degree
d. The polynomial f" defined as

h d T In
fL::EO'f<_7"')_>
T To

is a homogencous polynomial of degrec d in Flzg, 1, ..., z,], called the
homogenisation of f.

DEFINITION 2.32 A total ordering < on the set of monomials X* (where
a € N") that is compatible with multiplication is called a monomial
ordering in Flzy,...,2,]. An ordering is compatible with multiplication
if X < X# implies X*X7 < X#X" for all multi-indices o, 3,v € N”.

We now define three common examples of monomial orderings.

DEFINITION 2.33 The lez (lexicographic) monomial ordering is defined
by X% < X8 if the left-most nonzero entry in the vector 8 — o € Z" is
positive.

DEFINITION 2.34 The glez (graded lexicographic) monomial ordering is
defined by X < X7 if, firstly the degree of X# is larger than the degree
of X* (dg > dy), and sccondly if dg = d then the left-most nonzero
entry in the vector § — « € Z" is positive.
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DEFINITION 2.35 The grevler (graded reverse loxicographic) monomial
ordering is defined by X« < X7 if, firstly the degrec of X7 is larger than
the degree of X* (dg > dq), and secondly if dg = d,, then the right-most
nonzero entry in the vector § — o € Z™ is negative.

EXAMPLE 2.36 Some monomial orderings in Flx,y, z] are shown below.
ler ordering:  z%y%2% < 22y%z and zy’z < 2?y2?
glex ordering:  z%y*z < 22y%2% and 29z < 2%y2?
grevlez ordering:  2%y*z < 2%y%2% and 2%y2? < 29°2

We can scc that the pair of monomials z?y?z and 2%y32% and the pair
of monomials 2%y2? and zy3z arc ordered differently under the various

monomial orderings. a
Supposc the polynomial ring F(zy, . .., z,] has a monomial ordering <
and f € Flzy,...,z,] is a polynomial. The leading monomial of f is the

maximal monomial of f with respect to the ordering < and is denoted
by LM(f). The leading coefficient of f is the coefficient of the leading
monomial of f and is denoted by LC(f). The leading term of f is the
term associated with the leading monomial and is denoted by LT(f), so
LT(f) = LC(f)LM(f). The multidegree of f is the degree of the leading
monomial of f and is denoted by multideg(f).

These concepts enable us to give a multivariate generalisation of the
division algorithm for univariate polynomials (Thecorem 2.23).

THEOREM 2.37 Polynomial Division Algorithm. Suppose that the poly-

nomial ring Flz1, ..., z,] has a monomial ordering < and that (g1,...,9s)
is an ordered subset of Flzy,...,z,]. For any f € Flzy,...,x,], there
exist a;,r € Flz1,...,2y] such that

f=aig1+...+asg9s +7,

where either 7 = 0, or r # 0 and no leading monomial of the polynomials
¢; divides any of the monomials of ». Such a polynomial r is called a
remainder of the division of f by the set {¢1,...,9s}. Furthermore, if
a;g; # 0, then multideg(a;g;) < multideg(f).

3. Linear Algebra

Linear algcbra is at the heart of both the design and the analysis
of the AES. Diffusion in the AES sp-nctwork is achicved by a lincar
transformation. It is therefore not surprising to find linear algebra being
uscd as a tool in the analysis of the cipher.
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Vector spaces

DEeFINITION 2.38 Let (V,+) be an abclian group, F a ficld and - an
operation F x V. — V. We say that V is a vector space over F if the
following conditions hold.

m g - (v+v)=a-v+a-v foralv,v eV andael.

s (a+ad) v=a-v+a -viorallveV anda,d €F.

m (ad) - v=0a (a'v)forallveV and a,d’ €F.

m 1.v=uwforallv eV, wherc 1 is the identity clement of F.

In a vector space, an element of the set V is called a vector and an
element of the field F is called a scalar. The operation + is known as
vector addition and the operation - as scalar multiplication. The identity
element of the abelian group (V, +) is called the zero vector and is usually
denoted by 0. Furthermore, the symbol - is usually omitted if there is
no danger of confusion.

EXAMPLE 2.39 The sct " = {(a1,...,a,) | a; € F} forms a vector
space over F with vector addition and scalar multiplication defined by

(ai,...,an) + (d},...,al) = (a1+al,...,an +al), and
a-(ay,...,an) = (aa,...,a0,). O

A subsct U of a vector space V over a field F is a subspace of V if U
is itself a vector space over F. The notation U < V is used to denote
that U is a subspace of V. The intersection U NU’ of any two subspaces
U and U’ of V is a subspacc of V. The sum of subspaces U, U’ < V,
defined by

U+U ={u+v |ueUnu cU},

is also a subspace of V. This definition extends in the obvious way to
any finite sum of subspaces. If a vector space V = Uy +...+ U,, and the
subspaces U, ..., Uy, have trivial pairwise intersections (U; N U; = {0}
for i # j), then V is said to be the direct sum of these subspaces and we
write V =U; ®...6 Up,. In this casce, for any v € V, there exist unique
u; € U; such that v = ug + ... + upm.

The sct of all finite linear combinations of the vectors vi,...,vm € V,

<’U1,...,’Um> = {alvl + o AU | a; €F,v; € V},

is a subspace of V and is called the subspace generated by the sct
{v1,.. s Um}. A sct of vectors {v1,..., v} is sald to span or to be a
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spanning set of a subspace U < V if for all w € U there exists a; € F
such that v = Y7, a;v;.

A basis for a vector space V is a minimal spanning set for V.. Every
vector in a vector space can be expressed as a unique linear combination
over IF of the elements of a basis. Any basis for a vector spacc V always
has the same cardinality, which is called the dimension of the vector
space V and is denoted by dim(V).

EXAMPLE 2.40 The multivariate polynomial ring Flzi, ..., z,) forms an
infinite dimensional vector space over F. The subset of F[zy, ..., zy] of
all polynomials of degree at most 1 is a subspace of dimension n+ 1 with
basis {1,21,..., 2z} a

A set of vectors {v1, ..., vy} is said to be linearly independent if the
expression " a;v; = 0 implies that a; = ... = a,, = 0. If {e1,..., €.}
is a basis B for a vector spacc V of dimension n, then B is lincarly
independent and for any v € V there exist unique a; € F such that
v =aie;+...+ae,. Thus we can represent v with respect to the basis
B by the n-tuple (a1, ...,a,) € F*.

We can define cosets of subspaces in a similar manner to coscts of
subgroups. In particular, the set of all cosets of U in V forms a vector

space called a quotient vector space and is denoted by V/U.

Linear transformations

DEFINITION 2.41 A linear transformation or vector space homomor-
phism from a vector space V over a ficld F to a vector space U over F is
a mapping ¥ V — U that satisfics the following two conditions.

w Y(v+ ") =9 () + ) for all v,0’ € V.
m Plav) =a-9Y) =ayp(v) forallve V and a € F.

A vector space isomorphism is a bijective lincar transformation, and we
use V =2 U to denote that the vector spaces V and U are isomorphic.

EXAMPLE 2.42 Let V be a vector space over the field F of dimension n,
and let {e1,...,e,} be a basis for V. Given v € V, there exists a unique
(a1,...,ay) € F" such that v = a1e1 + ...+ ane,. The mapping V — F*
defined by v +> (a1, ..., a,) is a vector spacce isomorphism. Thus any two
finite—dimensional vector spaces over the same ficld are isomorphic. O

ExXAMPLE 2.43 Let V be a vector space of dimension n over the field
F, and ay,...,a, be elements of F. Then every mapping V — F of the
form aje; + ...+ aney, — ara1 + ... + apa, is a linear transformation
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from V into F, where F is considered as a one-dimensional vector space
over F. Furthermore, every linear transformation from V - [ is of this
form. Such a transformation is known as a linear functional on V. O

Let :V — V' be a linear transformation. Then the kernel of ¢ is
defined by ker ) = {v € V|¢(v) = 0} and is a subspace of V. The nullity
of ¥ is the dimension of ker+. The image of the linear transformation
1 is a subspace of V', and the rank of ¥ is the dimension of ¥(V'). The
Rank-Nullity Theorem states that

dim(V) = dim(ker ¢) + dim(¢)(V)).

The quotient vector space V/ker®y is isomorphic to the image of V,
so Y(V) = V/kery. If V! = V| then the subspace U < V is called
a -invariant subspace if ¥(U) < U. If ¥ satisfies ¢ o 9 = 9% = ¥,
then 1 is called a projection and ¢ (U) is a ¥-invariant subspacc for any
subspace U < V.

If 4:V — V is a linear transformation, then Zfzo a;p* is also a linear
transformation on V. Furthermore, the set

d d
I:{Zaiz’i Zai’)i:()}
1=0

i=0

is an ideal of the polynomial ring Flz]. The minimal polynomial of
the linear transformation 1 is defined as the unique monic polynomial
miny(x) that generates the principal ideal I. The minimal polynomial of
1 gives much information about both ¥ and the v-invariant subspaces.
For example, if miny(x) = my(x)...my(z) is the factorisation of the
minimal polynomial of ¢ into monic polynomials, then m;(¢) has a
natural intcrpretation as a linear transformation and the #-invariant
subspaces are given by ker m; ().

DEFINITION 2.44 Suppose that V and V' arc vector spaces over the
ficld I and that ¢: V — V' is a linear transformation. If b is a vector in
V', then the transformation V — V' defined by v + 9(v) + b is termed
an affine transformation.

DEFINITION 2.45 Consider a mapping 3:V x V — V’, where V and
V' arc vector spaces over the ficld F. For u € V, we can define the
mappings G, 8V - V' by v — B(u,v) and v — B(v,u) respectively.
The mapping 3 is called a bilinear transformation on V if 8!, and 8] arc
lincar transformations for all u € V.
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Matrices
DEFINITION 2.46 An m X n matriz over a field F is a rectangular array

a1l cee Qlp

ml .- Omn
with a;; € F. The clements a;; are called the entries of the matrix.

If A is an m x n matrix, the sequences (a;; ... a;,) are called the rows
of A, and the sequences (ai1j...an;) arc called the columns of A. Thus
A has m rows and n columns. If m = n, then A is called a square matriz
of order n. A submatriz of A is an m’ x n/ matrix (m’ < m and n’ < n)
obtained by taking a block of entrics of M with m’ rows and n’ columns.
The transpose of A is denoted by AT and is the n x m matrix whosc
(4, 7)-centry is given by aj;.

ExampLE 2.47 Let M, xn(F) denote the sct of all m x n matrices over
F. We can define the operation of addition of clements of M, xy, (IF)
in the obvious way by adding the corrcsponding entries of the ma-
trices. Similarly, we can define the scalar multiplication of a matrix
A € My« (F) by an element ¢ € F to be the matrix obtained by simply
multiplying every entry of A by ¢. Thus the set M ,xn(F) forms a vector
space over F of dimension mn. a

Let A be an m X n matrix and B be an r x s matrix over F defined as

all .o Q1n b11 e bls
aml .. Gmn b ... by

If n = r, we can define a multiplication of A by B. The product AB is
the m x s matrix C whosc cntrics are ¢;; = Y . airbgj.

DEFINITION 2.48 Suppose A is an m X n matrix over F and that A;.
denotes the i row of A. An elementary row operation on the matrix A
is one of the following three types of operation.

m The replacement of A;. by cA;. where ¢ € F with ¢ # 0.
m The replacement of A;. by A;. + cA;. where ¢ € F and ¢ # j.
s The interchange of two rows of A.

An elementary row opceration on the matrix A is equivalent to a map-
ping A ~ PA, where P is a m X m elementary row operation matrix.
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Any m x n matrix that can bec obtained from A by a serics of elcmentary
row operations is said to be row-equivalent to A. In particular, there
is a special set of matrices called the row reduced echelon matrices, and
any matrix is row-equivalent to a unique row reduced cchelon matrix.

The rank of an m x n matrix A is the number of lincarly independent
rows or columns (considered as vectors) of A. In particular, if A is a
row--reduced echelon matrix, then the rank of A is the number of nonzero
rows. We note that row—equivalent matrices have the same rank.

Let M, (IF) denote the set of all square matrices over F of order n. A
matrix A € M, (F) with entries a;; is a symmetric matriz if AT = A,
that is a;; = a5, and A is a diagonal matriz if a;; = 0 whenever @ # J.
The identity matriz is a diagonal matrix in which a;; =1 (¢ =1,...,n)
and is usually denoted by I. The identity matrix has the property that
Al = JA = A for any matrix A € M, (F). The square matrix A is an
invertible or non-singular matrix if there exists an n x n matrix A~}
such that AA™! = A71A = I. A matrix is invertible if and only if it is
row--equivalent to the identity matrix.

The determinant is a function det: M, (F) — F on square matrices
with special properties, and this function is widely used in the analysis
of squarc matrices [59]. In particular, we have det(AB) = det(A) det(B),
and a matrix A is invertible if and only if det(A) # 0.

The set of n X n invertible matrices forms a group under the operation
of matrix multiplication. This group is called the general linear group
and is denoted by GL(n,F). The subset of all matrices that have deter-
minant 1 forms a normal subgroup of GL(n,F). This subgroup is called
the special linear group and is denoted by SL(n,F). Thus we have

CL(n,F) = { A& Mu(F) | det(A)#0 }, and
SL(n,F) = {AeM,(F)| det(A)=1}.

Matrices are often used to represent lincar transformations betwecn
vector spaces and can be particularly useful for performing calculations
with such mappings. For cxample, matrices provide an easy way of
calculating the image of vectors under linear transformations or of cal-
culating the composition of linear transformations. Furthermorc, many
properties of a linear transformation, such as its rank, minimal polyno-
mial, invariant subspaces, can be casily obtained by analysing a matrix
corrcsponding to that linear transformation.

Suppose that ¥ : V — V' is a lincar transformation between two
vector spaces V and V7 over a ficld F of dimensions n and m respectively.
Suppose further that V' has a basis B = {e1,...,e,} and V' has a
basis B' = {€},...,€/,}. Then there exist a;; € F such that ¢(e;) =

>y aigel (1 < i < m), and the matrix of the linear transformation ¢
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with respecet to the bases B and B’ is defined as the m X n matrix A
whosc entries are a;;. Any v € V is given by v = Z?:l v;e; for some
v; € F. In this monograph, we represent vectors as column vectors or

U1
n X 1 matrices. Thus the vector v is given by the column vector

v”
with respect to the basis B, which we write as (v, .. ., vn)T. The cffect

of the linear transformation v on the vector v is given by

n 7 7 T T
G(u) =Y vle) =D i <Z aije; | =Y | Y aiv; | ¢,
j=1 =1 i=1

i=1 \j=1
which is expressed in terms of matrices by the matrix multiplication

air ... Qlp U1 a11v1r + ...+ a1l
Av=| | = .
Gm1 ... Gmnp Un Am1V1L + ..« + GmntUpn

The composition of lincar transformations can also be easily com-
puted using matrices. If ¢ : V — V' and ¢ : V! — V" arc lincar
transformations, and A and A’ are the matrices associated with 1) and
' respectively, then P = A’A is the matrix associated with the linear
transformation 1’ o ¢ : V' — V”. Thus the matrix of a composition of
linear transformations is the product of the respective matrices.

We note that the matrix corresponding to a linear transformation
is not unique as it depends on the basis chosen for the vector spaces.
Suppose, as above, that we have a linear transformation ¢ : V — V/
between two vector spaces V and V’ of dimension m and n respectively.
If the linear transformation + is represented by an m x n matrix A with
respect to one pair of bases and by another m x n matrix A with respect
to another pair of bascs, then there exist an invertible n x n matrix P
and an invertible m x m matrix P’ such that A = P’AP. We say that
the matrix A is obtained from A by a change of basis.

DEFINITION 2.49 Let A be an n x n matrix over the field F. The
minimal polynomial of the matrix A is the unique monic polynomial
ming(z) € Flz] of minimal degree such that mina(A4) = 0. The charac-
teristic polynomial of A is the polynomial c4(z) € F[z] defined by

ca(z) = det(zl — A).

We note that the minimal polynomial of a lincar transformation is the
same as the minimal polynomial of any of its associated matrices.
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THEOREM 2.50 Cayley -Hamilton Theorem. The minimal polynomial
of a matrix divides the characteristic polynomial.

ExaMPLE 2.51 Consider the matrix

0100
1 001
A= 0 01 1
1100

over the ficld Zq. It can be shown that the minimal polynomial of A is
mina(z) = 23 + 1 and the characteristic polynomial of A is

cal) =a* + 23+ 2+ 1.

We note that the minimal polynomial ming(z) divides cq(x). Further-
more, ming(z) = (z + 1)(x? + = + 1) as a product of irreducible poly-
nomials. Thus, if ¥ : V — V' is a lincar transformation associated with
A, then the invariant subspaces of ¢ arc given by ker(vn) and ker(1z),
where 1 and 3 arc the linear transformations V — V' associated with
the matrices (A + I) and (42 + A 4 I) respectively. O

Matrices are also widely used in coding theory, and most properties of
linear codes can obtained by studying their generator and parity check
matrices. Of special interest in the design and analysis of the AES arc the
matrices that arise from mazimal distance separable (MDS) codes [76].

DEFINITION 2.52 An m X n matrix A is called an MDS matrix if and
only if every square submatrix of A is invertible.

Linear systems and matrix complexity

Matrices can be used to represent systems of lincar equations. Supposc

we have such a system of m cquations in n variables zy, ..., z, given by
a11r1 + ...+ amer, = by
Am1T1 + ...+ QuaZn = by,

where a;; and b; are elements of a ficld F. This equation system can be
represented by the matrix equation

aiy ... Qin Tl b1

Aml .. Gmn Tn bm
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or equivalently Az = b. The standard process of solving this equation
system is to transform the matrix A to a row- reduced echelon matrix us-
ing clementary row operations. This corresponds to finding an invertible
m X m matrix P such that PA is a row reduced cchelon matrix. This
allows us to obtain an equivalent matrix cquation PAx = Pb, which
gives us an immediate full solution for x1,...,x,.

The simplest method of transforming the matrix A to a row reduced
echelon matrix is known as Gaussian reduction. Pcrforming Gaussian
reduction on a squarc n X n matrix takes of the order of n3 field op-
crations. However, more sophisticated techniques for row-reducing a
matrix can reducc this to less than cubic complexity.

DEFINITION 2.53 An n X n square matrix can be transformed to a row-
reduced echelon matrix with complexity of the order of n* ficld oper-
ations. We call w the exponent of matriz reduction. Thus w = 3 for
Gaussian reduction. The smallest values of w occur for row-reduction
techniques for a sparse matriz, that is a matrix whose almost all entries
are zero. The cxponent of matrix reduction w satisfies 2 < w < 3.

Algebras

DEFINITION 2.54 Supposc A is a vector space over a field F with a
multiplication operation A x A — A. If this multiplication operation is
associative and a bilincar mapping on the vector space A, then A is an
(associative) F-algebra, or more simply an algebra.

Informally, we can regard an algebra as a vector space that is also a ring.
The dimension of the algebra A is the dimension of A as a vector space.
The subset A" C A is a subalgebra of A if A’ is an algebra in its own
right, and A’ is an ideal subalgebra if it is also an ideal of the ring A. We
can also classify mappings between two algebras in the usual way, so an
algebra homomorphism is a mapping that is both a ring homomorphism
and a vector space homomorphism.

ExaMPLE 2.55 The ring of polynomials Flzq,...,z,] is a vector space
over F (Example 2.40). Thus Flzy,...,2,] forms an F-algebra, known
as a polynomial algebra. (W]

ExAMPLE 2.56 The set M,,(F) of n x n matrices over F forms a vector
spacc over F of dimension n? (Example 2.47). Matrix multiplication
is an associative bilincar mapping on M, (F). Thus M, (F) forms an
F-algebra of dimension n?. The set D,(F) of n x n diagonal matrices
over F forms a subalgebra of M,,(F) of dimension n. Such algebras arc
known as matriz algebras. 0
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4. Finite Fields

The design of the AES is based around finite fields. All the operations
used by the AES arc described by algebraic operations on a finite field
of even characteristic. In this section, we discuss the properties of finite
fields relevant to the specification and algebraic analysis of the AES.

Finite fields and subfields

The set Zp = {0,...,p — 1} with addition and multiplication operations
defined modulo p forms a finite ficld if and only if p is prime (Exam-
ple 2.20). This field is called the Galois field of order p and is denoted
by GF(p). The Galois ficld GF(p) plays a fundamental role in the theory
of finite fields.

DEFINITION 2.57 Suppose that F and K are two fields. If F ¢ K, then F
is said to be a subfield of K, or equivalently K is said to be an extension
field of F.

THEOREM 2.58 A finite ficld of characteristic p (prime) has a unique
minimal subficld isomorphic to GF(p).

If K is a extension ficld of the ficld F, then K is also a vector space
over F. The dimension of this vector space is the degree of the extension.
If F has order ¢ and K is an extension field of F of degree d, then K has
order ¢%. As every finite field has prime characteristic p, it follows from
Theorem 2.58 that cvery finite field has order p™ for some prime p and
some positive integer n.

THEOREM 2.59 For every prime number p and cvery positive integer n,
there exists a finite field of order p™. Furthermore, any two finite ficlds
of order p™ are isomorphic.

Thus finite fields of order p™ arc unique up to isomorphism. This field
is called the Galois field of order p” and denoted by GF(p™). A subfield
of GF(p™) has order p¢, where d is a divisor of n. Furthermore, there is
exactly onc subficld of order p? for every divisor d of n. For cxample, the
finite field GF(2%) has GF(2%), GF(2?), and GF(2) as proper subficlds.

THEOREM 2.60 The multiplicative group GF(g)* is a cyclic group of
order ¢ — 1.

A gencrator of the multiplicative group GF(q)* is called a primitive
element of the field GF(g). The number of primitive clements in GF(g)
is (¢ — 1), wherc ¢(m) is Euler’s totient function, which gives the
number of positive integers less than or equal to m and coprime to m.
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Explicit construction of finite fields

Theorem 2.27 provides a mcthod of constructing a finite field as a quo-
tient ring. Suppose F is a finitc ficld of order ¢ = p™ and f(z) € Fla] is
an irreducible polynomial of degree d. The quotient ring K = (—];(%)7 isa
field of order ¢¢ = p™?, which is an cxtension field of degree d of F. In
the manner given in Example 2.25, its elements can be represented as

ad¥1$d71 + ...+ CL2.732 + a1z + ag,
where a; € F. Addition and multiplication are then as described in
Example 2.25. Theorem 2.59 states that any finite field of order p"¢ is
isomorphic to K.

We can also construct GF(p™?) dircctly as an eztension field of F.
Let 8 denote a root of the irreducible polynomial f(z) of degree d. The
set F(0) of all quoticnts (with nonzero denominator) of polynomials in 6
with cocflicients in F is the smallest ficld containing both 6 and F. Fur-
thermore, F(8) is the extension field obtained by adjoining § to F. This
extension field F(0) has p™¢ clements and so is isomorphic to GF(p™?).
The clements of F(8) are given by

ad_led“ + ..o+ a26’2 + a1 + ag,

where a; € . If the clement 0 is a generator of the multiplicative group
of F(6), then the polynomial f(x) is called a primitive polynomial.

EXAMPLE 2.61 The polynomial m(z) = 28 + 2%+ 2%+ z+1 € GF(2)[2]
is irreducible. If 8 is a root of m(z), then

GF(2)(0) = %%:;’j =~ GF(2%).

The clements of the quotient ring sz(?)p arc given, for a; € F, by

a7x7 + ...+ a2x2 + a1z + ag;

whereas the elements of extension field F(9) are given, for b; € F, by
b0 .. baB% + 516 + by.

We note that m(z) is not primitive, since the order of 8 € F(6) is 51. O

Irreducible polynomials over a field F of order ¢ arc the basic tools
for the construction of all finite extensions of F. If K is an cxtension
of F of order ¢", then Theorcm 2.60 shows that a¢"~* —1 = 0 for all
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nonzero a € K. Thus the polynomial 27" — z has all ¢" clements of K
as a root. The field K & GF(¢") is known as the splitting field of the
polynomial #7" —z. This polynomial can be used to obtain all irreducible
polynomials over F with the required degree.

THEOREM 2.62 Let F be a finite ficld of order g. Then the polynomial
x9" —z € F[z] is the product of all monic irreducible polynomials in F[z]
whose degree divides n.

The number of irreducible polynomials in F[z] of degree n is given by

% > nldgi

dn

where p is the Mébius function, defined by p(1) = 1, u(n) = (=1)* if
n is the product of & distinct primes, and 0 otherwise. The number
of primitive polynomials of degree n is %cp(q” — 1), where ¢ is Euler’s
totient function.

EXAMPLE 2.63 There are § (1(1)2% + 1(2)2% + 12(4)2% + p(8)2') = 60
irreducible polynomials of degree 8 in GF(2)[z], of which %@(28 —-1) =16
arc primitive polynomials. W]

DEFINITION 2.64 A ficld F is said to be algebraically closed if cvery
polynomial in F[z] has a root in F. The algebraic closure of a ficld F is
the smallest extension ficld K of F such that K is algebraically closed.

Representations of a finite field

Let F be a field and K = F(#) be an cxtension field of F of degree d.
The most common way to describe the elements of K is to regard all
clements as vectors in the vector space K of dimension d over the F.
Every element in K can be written uniquely as

ag1047 4 ag0? 4 a0 + ag,

where a; € F. Thus the sct {0971,...,6%,0,1} forms a basis of K as
a d-dimensional vector space over F. This basis is called a polynomial

basis for the ficld K.

EXAMPLE 2.65 Supposc 6 is a root of 2% + 2* + 23 + 2+ 1 € GF(2)[],
and let K be the ficld GF(2)(8) (Example 2.61). Any multiplication
mapping K — K is a linear transformation of K as a vector space over
GF(2). The squaring mapping in K is also a lincar transformation. If
we let 7y and S denote the matrices that correspond to multiplication
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by 6 and squaring with respect to the polynomial basis {07,...,62%,0,1},
then we have

01 000000 11000000
00100000 0010100 0
00010000 01 100000

T L 0001000 g | 10010100

=11 0000100 =1 11110000
00 000O0T10 001 00O0T10
100000 0 1 11010000
10000000 010100 01

0

There arc other bases which arc used for the field K when considered as
a vector space over I, such as the normal basis {3, 84, ﬂq2, e ,ﬂqdfl} for
suitable # € K. This representation is particularly useful when perform-
ing the exponentiation of clements in K and may offer implementation
advantages in some situations.

There are also methods of describing an clement of the finite field
K of order ¢™ which depend on logarithmic functions of K rather than
the vector space aspect of K. Suppose 8 is a primitive clement of K
and @ = §° (0 < i < ¢"* —1). The discrete logarithm is a function
logg : K* — Zg¢n_1 defined by logga = log g8* = i. We can thus
represent the nonzero elements a € K by logga € Zgn—1. If we adopt
the convention that the discrete logarithm of 0 is denoted by oo, then we
can represent an element of K by an element of Zgn_1 = Zgn_1 U {oo}.

The Zech or Jacobi logarithm offers another logarithmic method for
describing a finite ficld element. The Zcch logarithm is based on the

function Z:Zgn_1 — Zgn—1 given by

Z(n) = logg(8" + 1),

so 8% = g 4+ 1 with the convention that 8% = 0. The definition
can be extended to all integers by working modulo ¢" — 1. The Zech
logarithm of 5" can now be defined to be Z(n). We have the following
identitics concerning this function Z:

Z(Z(n)) = n,
Z(2n) = 2Z(n),
Z(-n) = Z(n)—n.

This function is of interest since it can be used to calculate the sum of
two powers of 3, since

ﬂm + ﬁn — ﬁn(ﬁmfn + 1) — /@n/@Z(m*n) — /BTL+Z(m~n).
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Functions in a finite field
DEFINITION 2.66 Let I be a finite field of order ¢ and K be an extension

field of F of degree d. The clements a, a9, aqz, B a?"" are the conjugates
of a € K with respect to F.

THEOREM 2.67 Supposc K is an extcnsion of a ficld F of degree d.
Any element a € K is a root of an irreducible polynomial f(z) € Flz] of
degree n dividing d. The roots of f(x) arc the conjugates of a.

‘We now consider some functions of interest on finite ficlds.

DEFINITION 2.68 Let I be a finite field of order ¢ and K be an extension
field of F of degree d. The {trace function on K with respect to F is the
function Tr: K — F defined by
Tr(a) =a+a?+a? +... +a? "
Thus the trace of an element a € K is the sum of all conjugates of
a. The trace function is a linear functional on K, considercd as a vector

space over F (Example 2.43). In fact, any lincar functional on K is of
the form a — Tr(Ba) for some 3 € K.

DEFINITION 2.69 Let F be a finite field of order ¢ and K be an cxtcension
field of F of degree d. The norm function on K with respect to F is the
function N: K — F defined by

d
2 d—1 g_—1
N{a)=aa?a? ... a7 =g T.

Thus the norm of an clement a € K is the product of all conjugates
of a. The norm function is a group homomorphism K* — F* between
the multiplicative groups of the fields K and F.

DEFINITION 2.70 A linearised polynomial f(z) € Kz] is a polynomial
given by

f(z) = apz + a127 + asz” + ..+ ag_gz?
where a; € K. Thus a lineariscd polynomial f(z) is a polynomial whosc
evaluation f(a) for any a € K gives a linear combination of the d conju-
gates of a.

Linearised polynomials are linear transformations on K, when considered
as a vector space over F. Conversely, any linear transformation of K over
F can be expressed as a lincarised polynomial.
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EXAMPLE 2.71 Any lincar transformation of GF(2®) as a vector space
over GF(2) can be represented by a (linearised) polynomial of the form
flz) = a0x20 + a1m21 + a2x22 + .k a7m27, where a; € GF(28). O

We now consider the field GF(p?) as an extension field of GF(p), where
p is prime. The mapping 7: GF(p?) — GF(p?) defined by a + aP maps
a to one of its conjugates with respect to GF(p). This mapping satisfies

T(a+d')=7(a)+7(a) and 7(ad") = 7(a)7(a’).

Thus 7 is a field automorphism of GF(p?), known as the Frobenius auto-
morphism. The sct of all automorphisms of GF(p?) under the operation
of composition is the cyclic group of order d generated by 7. We note
that 7 fixes all elements of the subfield GF(p) of GF(p%). Thus the
automorphisms of GF(p?) arc also lincar transformations over GF (p).

5.  Varieties and Grobner Bases

A large part of this monograph is concerncd with expressing an AES
encryption as a system of polynomial equations and considering methods
of solution for such cquations. In this section, we give a brief overview
of the basic concepts uscd to analysc such equation systems.

Varieties

An affine subset of a vector space V is a cosct or translate U + u of
some subspacc U < V. The affine space based on V is the geometrical
space given by considering certain geometrical propertics of the affine
subsets of V' [58]. Thus we can usually identify the n-dimensional affine
space over a field F with F*. The projective space PG(n,F) is the
geometrical space given by considering the one-dimensional subspaces of
the (n + 1)-dimensional vector space F**1. Thus we can represent an

clement of PG(n,F) by a nonzero vector (ag, ai, . .., a,) € F**1 where
all nonzero scalar multiples of (ag, ag, . . . , @n) represent the same element
of PG(n,TF).

DEFINITION 2.72 Let F be a field and F™ denote the n-dimensional
affine spacc over F, and suppose that fi,...,f;, arc polynomials in
Fizi,...,z,). The affine variety defined by fi,..., fm is the subset of
F™ given by

{(a1,...,a,) €F*| fiay,...,an) =0 fori=1,...,m}.

This variety is denoted by V(f1,..., fm)-
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Thus the affinc varicty of Definition 2.72 describes the set of solutions
in F of the polynomial equation system

filzr, o zn) =0, oo fi(zy, .o 2n) =00

ExaMpLE 2.73 Consider the polynomial ring Rlz,y] in two variables,
and let f(z,y) = 2% + y? — 1 and g(x,y) = = — 1 be two polynomials
in R[z,y]. The affine varicty V(f) consists of the points in the circle
of radius 1 in R? and is the solution set of the equation z% 4 y? = 1.
The affine variety V(f,g9) = {(1,0)} € R? is the sct of solutions to

flz,y) =g(z,y) =0. a
DEFINITION 2.74 Let PG(n,F) denote the projective space of dimen-
sion m. Suppose that fi,..., f, are homogencous polynomials in the

polynomial ring F[zg, z1,...,2z,]. The projective variety defined by the
polynomials fi, ..., fm is the subset of PG(n, F) given by

{ (ag,ai,...,a,) € PG(n,F) | filao,a1,...,a,) =0fori=1,...,m }.

The projective space PG(n,F) can be partitioned into two subsets U
and H, where

U = {(ap,a1,..-.,a,) € PG(n,F) | ag #0 }, and
H = {(0,a1,...,a,) € PG(n,F) }.

The subset U can be identified with the affine space F™ by using the

mapping
a1 Gy,
(ap,a1,...,an) — <—,...,—) .
agp ag

Furthermore, the subset H can be identified with the projective spacc
PG(n — 1,F) by using the mapping (0,a1,...,a,) — (a1,...,a,). Thus
the projective space PG(n,F) can be partitioned into an affinc space U
and a projective space H of smaller dimension. The projective part H
is known as the hyperplane at infinity of PG(n,F).

Given a projective variety W € PG(n,F), the set V = W N U can
be considered as an affine varicty of F™ and is called the affine portion
of W. Thus cvery projective varicty W can be seen as consisting of an
affine variety V together with its points at infinity WN H. Theorem 2.75
summarises the relationship between an affine and a projective variety.

THEOREM 2.75 Let V C F" be the affine variety defined by the poly-
nomials fi,..., fm € Flay,...,z,). If fih denotes the homogenisation
of the polynomial f;, then the varicty W defined by the polynomials

P ft € Flzo,z1,...,2,] is a projective variety of PG(n,F), of
which the affine portion is WNU = V.



Mathematical Background 31

The above definitions of affine and projective varietics are given in
terms of a finite set of polynomials. However, Theorcm 2.76 shows that
varicties are in fact defined by polynomial ideals.

THEOREM 2.76 Let I be an idcal of Flzq,...,z,]. If V(I) denotes the
sct
{(a1,...,a,) €F" | f(a1,...,ap) =0for f €},

then V(I) is an affine variety. Furthermore, if I = (f1,..., fin), then
V(I) = V(fl: o ~)fm>»

Similarly, a projective varicty can be defined by a homogeneous ideal
of Flzg, x1, ..., zy), that is an ideal which is generated by homogeneous
polynomials.

Grobner bases

Theorem 2.76 means that the problem of finding the solutions of a poly-
nomial cquation system over a field F is often studied in the context
of commutative algebra and polynomial ideals. The solution set of a
particular system

fl(wla"'ax’n) :Oa af'rn(xla-“axn) =0

can be found by computing the variety V(I}, where I = (f1,..., fm). In
particular, any gencrating set of I can be used to compute V(I). The
Hilbert Basis Theorem statcs that any idcal I < Flzy,...,x,] is finitely
generated. A Groébner basis of the polynomial ideal [ is a particular
type of generating set of I and can be particularly useful in obtaining
various properties of /, including the variety V(I).

DEFINITION 2.77 Supposc that Flzy,...,2,] is a polynomial ring over
a field F with a monomial ordering and that I < F[z,...,2,) is a non--
trivial ideal. We let LT(I) denote the set of all leading terms of clements
of I and (LT(I)) denote the ideal generated by the monomials in LT (7).
A finite set G = {g1,...,9:} C I is said to be a Grébner basis of I if

(LT(g1),...,LT(gs) ) = ( LT(I) ).

Thus G is a Grobner basis of I if and only if the leading term of
any polynomial in [ is divisible by at least one of the leading terms
{LT(g1),...,LT(gs)}.

Every non trivial ideal I < Flzy,...,z,] has a Grobner basis, which
is a generating sct or basis for the idcal I. If G is a Grobner basis of T
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and f € I, then the set G U {f} satisfies Definition 2.77 and is also a
Grobner basis of I. Thus an idcal does not have a unique Grobner basis.

DEFINITION 2.78 A reduced Gréobner basis for I is a Grobner basis G
such that the leading coeflicient of every polynomial in G is 1 and none
of the monomials of any f € G is divisible by the leading term of any
other polynomial in G. Thus in a reduced Grobuer basis (G, no monomial
of f € @ belongs to the ideal { LT(G\ {f}) ).

Every non-trivial ideal I of Fz1,...,®,] has a unique reduced Grébner
basis (with respect to a specific monomial ordering). We can obtain the
reduced Grobner basis for I from a Grébner basis G for I by dividing
or reducing each f € G by the set G\ {f}.

EXAMPLE 2.79 We consider the ring of rcal polynomials in three vari-
ables Rz, y, 2] with the grevlez ordering. The set

{26 — azgy, yz4 + x, acy2 + z2}

is a (reduced) Grobner basis for the ideal of R[z, y, 2] gencrated by thesc
three polynomials. By contrast, consider the set

G = {zy® + 2z, v’z + 2% —y}
and the ideal I gencerated by these two polynomials. We have
oy = z(ey® + 22) —2(y’z + 2% - y),

so zy € I. However, zy is not divisible by the leading term of cither
polynomial in G (zy? or y?7). Thus G is not a Grébner basis for the
ideal I. g

Theorem 2.80 gives a sufficient condition in terms of the greatest com-
mon divisor of pairs of leading monomials for identifying whether a set
is a Grobner basis of a polynomial idcal.

THEOREM 2.80 Supposc G C Fly, ..., 2y is a sct of polynomials such
that ged(LM(f),LM(g)) = 1 for all distinct f,g € G. Then G is a
Grobner basis for the ideal (G).

Thus, if the leading monomials of all polynomials in a set G are pair-
wise coprime, then G is a Grobner basis for the ideal generated by the
polynomials of G. However, Example 2.79 shows that the condition of
Theorem 2.80 is not necessary for a set G to be a Grdbner basis of (G).

Grobner bases arc an extremely powerful concept, with many appli-
cations in commutative algebra, algebraic geometry, and computational
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algebra. For example, Grobner bases can be used to solve the ideal
membership problem, that is to decide whether a polynomial f is in an
ideal I <« Flzy,...,z,]. A polynomial f is in I if and only if f reduces
to zero with respect to a Grébner basis of 1, that is the division of f by
a Grobner basis of T has remainder zero (Theorem 2.37).

The main relevance of Grébner bases to cryptology is the problem of
solving polynomial cquation systems. If we have such a system

iz, yzn) =0,..., fm(z1, ..., 30) =0,

then we can find its solution set by computing the Grébner basis for the
ideal I = (f1,..., fm) and computing the associated varicty V(I). The
Grébner basis of I provides implicit solutions to the equation system
over the algebraic closure of the field F. A particularly useful monomial
ordering for finding solutions to this polynomial equation system in F is
the lex ordering, which is an example of an elimination ordering.

It is worth noting that cquation systems arising in cryptography of-
ten display many propertics. Cryptographic cquation systcms arc often
defined over a small finite field GF(q) and the solutions of cryptographic
interest lie in this field. In this case, we could add the field relations
x} — x; to the original equation system. In this way the solutions of
the cxtended equation system are restricted to the basc ficld GF(g).
Furthermore, cryptographic cquation systems often have a unique so-
lution (ai,...,an) € GF(g)". In this case, the reduced Grdbner basis
of the ideal corresponding to the extended cquation system would be
{z1—a1,...,onp —an}

We discuss some methods and algorithms for computing a Grébner
basis of an idcal I QF[zq,...,zy] in Scction 6.1.



Chapter 3

DESCRIPTION OF THE AES

This chapter gives a brief description of the AES and its design ratio-
nale. We place a particular cmphasis on areas that are most relevant to
subsequent chapters. The AES is a block cipher with a block size of 128
bits and a key size of 128, 192, or 256 bits. We denote thesc versions by
AES-128, AES-192, and AES-256 respectively. This monograph focuses
on AES-128 and we follow the formal description given in FIPS 197 [95].

1. Structure

The standard view of the AES is as a series of operations on a square
array of 16 bytes [37, 39, 95]. The mathematical foundations that we
need for this description arc given in Chapter 2.

AES byte structure

An important aspect of any cipher is the method of data representation.
We first discuss the structure used to represent a byte of data and then
the structure used to represent the 16-byte blocks of data.

A byte is conventionally viewed as an ordered sequence of eight bits.
Thus a byte consisting of the cight bits bybgbsbsbababibg can be viewed
as a vector in an 8-dimensional vector space over GF(2).

A byte can also be viewed as an element of the finite field GF(28).
The AES standard [95] specifies a representation of a byte in GF(28) by
defining this ficld in terms of the polynomial

m(z) =a® 4zt b+ oz 1,
which is irreducible in GF(2)[z]. We term the above polynomial m(x) the

Rijndael polynomial. From Section 2.4, there are two cquivalent methods
to define the field GF(28) with respect to this irreducible polynomial,
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«— column j —

0o 1 2 3

’ 0 | Bo | By | Bs |Bi2

1 {By|Bs{Bg B3
TOW 1

By | Bg [B1o|B1a
Bs | By |Bi1|Bis

-—
W W

Figure 3.1. The AES array of bytes.

either as a quotient ring or as an extension field. We refer to the field
GF(2%) defincd by the Rijndael polynomial as the Rijndael field and
denote it by F throughout this monograph. Thus F = GF(2)[z]/(m(z))
or F = GF(2)(9), where 6 denotes a root of the Rijndael polynomial,
termed the Rijndael root. The representation of a byte bybgbsbabsbaobibg
in F can then be given in cither of the following two equivalent ways.

» Quotient Ring: brz7 + bez® + bgaz® + baz? + bax® + bax? + byz + bo.
» Extension Field: bs67 + bgf% + bgf® + baf?* + 1302 + by0? + b0 + bg.

In the AES, bytes are represented as elements of the Rijndacl ficld F
and arc combined using addition (which is equivalent to bitwisc XOR)
and multiplication in the ficld.

We use the common practice of representing a byte using hexadecimal
notation, and we interpret such hexadecimal notation as a vector or field
clement depending on the context. For example, 24 rcpresents the bit
string 00100100, the column vector (0,0,1,0,0,1, O,O)T7 or the clement
65 4- 62 in the extension ficld, according to the context.

AES block structure

The AES transforms the plaintext into the ciphertext via a sequence of
intermediate 128-bit states. Full details of how the AES represents a
string of 128 bits as a set of 16 bytes are explicitly given in [95]. The
16 bytes in the state or a round key can be represented by the string of
bytes

BoB1B2B3B1Bs Bs Br Bs By B1oB11B12B13B14Bis.

An equivalent representation is as a 4x4 array S of these bytes, where
Sa,j) = Bajri (0 <4,5 < 3), as shown in Figure 3.1.
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[ AddRoundKey | AddRoundKey [ AddRoundKey |
SubBytes SubBytes SubBytes
ShiftRows ShiftRows ShiftRows
MixColumns X9 MixColumns 1 MixColumns x13
AddRoundKey AddRoundKey AddRoundKey | |
} I
SubBytes SubBytes SubBytes
ShiftRows ShiftRows ShiftRows
AddRoundKey AddRoundKey AddRoundKey
AES-128 AES-192 AES-256

Figure 3.2.  Schematic overview of the AES encryption.

Encryption

There are four basic operations when encrypting with the AES. These
operate on the state array of 16 bytes.

= SubBytes modifies the bytes in the array independently.

» ShiftRows rotates the four rows of the array independently.

w MixColumns modifies the four columns of the array independently.

= AddRoundKey adds the bytes of the round key and the array.

These basic operations form a typical round of cncryption. A complete
description of AES encryption requires an initial AddRoundKey (“Round
07) followed by Ny rounds of computation, where N, = 10, 12, or 14
for AES-128, AES-196, or AES-256 respectively. The last round of com-
putation does not contain a MixColumns opcration. The sequence of
operations for an AES encryption is summarised in Figure 3.2.

SubBytes.

The AES S-box S[-] provides a permutation of the sct of 256 possible
input bytes and is given as a look-up table in Figure 3.3. The opera-
tion SubBytes modifies the byte values by B; + S[B;] (0 < < 15) or
cquivalently, the array clements S;; by S;j + S[S;;] (0 < 4,5 <3). A
mathematical description of SubBytes is given in Section 3.2.

ShiftRows.

Each row ¢ (0 <4 < 3) of the 4x4 byte array S is rotated to the left by i
positions. Thus ShiftRows modifies the byte valucs by (where subscripts
are interpreted modulo 4)

Sij = Sij—i -
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-0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F
0- | 83 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1- | CA 82 C9 7D FA 59 47 FO AD D4 A2 AF 9C A4 72 CO
2- | B7 FD 93 26 36 3F F7 CC 34 A5 Eb F1 71 D8 31 15
3- |1 04 C7 23 C3 18 96 05 94 07 12 80 E2 EB 27 B2 76
4- | 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
65~ | 53 Di 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6- | DO EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7- | 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8- | CD 0OC 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9- | 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE SE 0B DB
A- | EO 32 3A OA 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B- | E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C- | BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D- | 70 3E B5 66 48 03 F6 OE 61 35 57 B9 86 C1 1D 9E
E- | E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F- | 8C A1 89 OD BF E6 42 68 41 99 2D OF BO 54 BB 16

Figure 3.3. The AES S-box used in SubBytes. The value of S[xy] is given at the
intersection of row x- and column -y.

MixColumns.

Each column of the 4x4 byte array S is regarded as a column vector
over the Rijndacl field F. It is then updated by multiplying the column
vector by a specified 4x4 matrix over F. Thus MixColumns modifies the
state array by the matrix multiplication (0 < j < 3)

S())j 02 03 01 o1 So)j
31,]' -, 01 02 03 01 Sl’j
Sy 01 01 02 03 Saj
S35 03 01 01 02 S35

AddRoundKey.

The AES key schedule processes the user-supplied key to give the 16-
byte round keys Krq...Kr15 (0 < r < N;) for the AES. In round r,
AddRoundKey updates the state array by B; — B; + Ky (0 <4 < 15) or
equivalently by Si,j = Si,j + /C/,~74j+i (0<4,5< 3).

Key schedule

The generation of the AES round keys is straightforward even though
three key sizes arc supported. Generally speaking, key material is gener-
ated recursively, and at cach round sufficient key material is extracted to
form a 128-bit round key. We only give a description of the key schedule
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[Kro Kt Krg KeslKd Kos Krs Knr[Krg Krg Kr 10K 13K 12K 13K 14K 1]

ToT1T2T3
S, F;

JARY
A\

A
D

[Kso Ksi Koz K 3lKsa Kos Ko Ko 7[Ks8 K9 Ko, 10K5,11Cs,12K5,13K5,14K5 18]

Figure 3.4. A schematic overview of the AES-128 key schedule.

for AES-128, though the key schedules for AES-192 and AES-256 arc
similar. Full details arc given in [95].

We assume that the round key at round » (0 < r < 10) is given by
Ko ... K15 where the user-supplied key forms the round key at round 0.
In order to form the round key for round s = r + 1, we first define a
temporary word 79717273 of four bytes by

To = S[Ky13) + 0", 71 = S[Kr14], T2 = S[Ky15], and T3 = S|K,,12],
where 4 is the Rijndael root. The key for round s is then given by

o [ Kt T 0<i<3
) K+ Ksjia 4 <7 <15.

In summary, the temporary word 737;7273 is generated using the non-
linear key schedule function F;. This consists of applying the S-box to
all components of the input, a rotation of bytes, and the addition of a
round-specific constant. This process is illustrated in Figurc 3.4.

Decryption

Decryption for the AES can be performed by using the inverse of the
four operations in reverse order, with the round keys taken in reverse
order. Since the operations SubBytes and ShiftRows commute and
MixColumns is omitted from the final round [37, 39, 95], there is an
cquivalent description of the AES decryption that mimics the scquence
of operations during encryption.

InvSubBytes.

The inverse of the AES S-box, S71[], is casily derived. The operation
InvSubBytes modifies the state by B; — S71B;] (0 < ¢ < 15) or, in
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-0 -1 -2-3-4-5-6-7-8-9-A-B-C-D-E-F
0- | 52 09 6A D5 30 36 Ab 38 BF 40 A3 9E 81 F3 D7 FB
1- | 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2- | 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3- | 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4- | 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5- | 6C 70 48 50 FD ED B9 DA S5E 15 46 57 A7 8D 9D 84
6- | 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7- | DO 2C 1E 8F CA 3F OF 02 C1 AF BD 03 01 13 8A 6B
8- | 3A 91 11 41 4F 67 DC EA 97 F2 CF CE FO B4 E6 73
9- | 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A- | 47 F1 1A 71 1D 29 C5 89 6F B7 62 OE AA 18 BE 1B
B- | FC 56 3E 4B C6 D2 79 20 9A DB CO FE 78 CD 5A F4
C- | 1F DD A8 33 88 07 C7 31 Bt 12 10 59 27 80 EC 5F
D- | 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E- | AO EO 3B 4D AE 24 F5 BO C8 EB BB 3C 83 53 99 61
F- 117 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Figure 3.5. The inverse of the AES S-box used in InvSubBytes. The value of S™'[xy]
is given at the intersection of row x- and column -y.

terms of the state array, the array elements S;; by &;; S_l[S,-)j]
(0 < 4,7 < 3). The inverse of the S-box is given as a look-up table in
Figure 3.5.

InvShiftRows.

Eachrow i (0 < ¢ < 3) of the 4x4 byte array S is rotated to the right by ¢
positions. Thus InvShiftRows modifies the byte values by S; ; — S; 544,
where the subscripts arc interpreted modulo 4.

InvMixColumns.

Each column of the 4x4 byte array S is regarded as a column vector
over the Rijndael field F, which is updated using the inverse of the 4x4
MixColumns matrix over F. Thus InvMixColumns modifies the state
array by the matrix multiplication (0 < j < 3)

S(),j OE 0B 0D 09 So J
S14 09 OE OB OD 81

Jol g
S2,j OD 09 OE OB Sy J

Sg)j OB 0D 09 OE 83,j
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-0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F
0- | 00 01 8D F6 CB 52 7B D1 E8 4F 29 CO BO E1 E5 C7
1- | 74 B4 AA 4B 99 2B 60 5F 68 3F FD CC FF 40 EE B2
2- | 3A 6E 54 F1 55 4D A8 C9 C1 0A 98 15 30 44 A2 C2
3- | 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19
4- | 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 09
5- | ED 5C 05 CA 4C 24 87 BF 18 3E 22 FO 51 EC 61 17
6- 1 16 BE AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B
7- | 79 B7 97 85 10 BS5 BA 3C B6 70 DO 06 Al FA 81 82
8- | 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4
9- | DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A
A- | FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62
B- | OC EO IF EF 11 75 78 71 A5 8E 76 3D BD BC 86 57
C- | OB 28 2F A3 DA D4 E4 OF A9 27 53 04 1B FC AC E6
D- | 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B
E- | B1 OD D6 EB C6 OE CF AD 08 4E D7 E3 5D 50 1E B3
F- | 6B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C

Figure 3.6. The AES inversion within the S-box.

2. Design Rationale

Each component of the AES was carcfully chosen and has a specific
role. The design rationale is discussed in [37, 39] and we only present the
cssential points here. Each round of the AES is considered to have three
parts. The first is SubBytes, in which a substitution is performed on
each byte of the state array. This is termed the substitution layer. The
second part is ShiftRows followed by MixColumns, which gives diffusion
across the state array. This is termed the diffusion layer. The final part
of an AES round introduccs key material by AddRoundKey. We now
discuss the substitution and diffusion layers.

Substitution layer

The substitution layer is based on the AES S-box which is, in turn,
defined by the composition of three operations.

m [nversion. The AES inversion operation is inversion in the Rijndael
ficld F, but extended so that 0 — 0. Thus, the input byte to the
S-box is regarded as an clement w € F and for w # 0 the output z
satisfies 2 = w™! and wz = 1. We denote the extension to the case
w =0 by z = wD and give a look-up table in Figure 3.6.

s GF(2)-linear mapping. The GF(2)-linear mapping is a lincar trans-
formation ¢ : GF(2)® — GF(2)® specified by an 8x8 circulant matrix
over GF(2). The result = of inversion is regarded as a vector in
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-0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F
0- | 00 1F 3E 21 7C 63 42 5D F8 E7 C6 D9 84 9B BA Ab
1- | F1 EE CF DO 8D 92 B3 AC 09 16 37 28 75 6A 4B 54
2- | E3 FC DD C2 9F 80 A1 BE 1B 04 25 3A 67 78 59 46
3- |12 0D 2C 33 6E 71 50 4F EA F5 D4 CB 96 89 A8 B7
4- | C7 D8 F9 E6 BB A4 85 9A 3F 20 01 1E 43 5C 7D 62
5- | 36 29 08 17 4A 55 74 6B CE D1 FO EF B2 AD 8C 93
6- | 24 3B 1A 05 58 47 66 79 DC C3 E2 FD AO BF 9E 81
7- | Db CA EB F4 A9 B6 97 88 2D 32 13 0C 51 4E 6F 70
8- | 8F 90 B1 AE F3 EC CD D2 77 68 49 56 OB 14 35 24
9~ | 7E 61 40 5F 02 1D 3C 23 86 99 B8 A7 FA E5 C4 DB
A- | 6C 73 52 4D 10 OF 2E 31 94 8B AA B5 E8 F7 D6 C9
B- [ 9D 82 A3 BC E1 FE DF CO 65 7A 5B 44 19 06 27 38
C- | 48 57 76 69 34 2B OA 15 BO AF 8E 91 CC D3 F2 ED
D- | B9 A6 87 98 C5 DA FB E4 41 BE 7F 60 3D 22 03 1C
E- | AB B4 95 8A D7 C8 E9 F6 53 4C 6D 72 2F 30 11 OE
F- | BA 45 64 7B 26 39 18 07 A2 BD 9C 83 DE C1 EO FF

Figure 3.7. The AES GF(2)-linear mapping within the S-box.

GF(2)%, and the output vector y is given by y = £(z), where

Y7 10001111 T7
i 11000111 6
s 11100011 s
y¢ | |1 11 10001 x4
y3 | 11111000 x3
Y2 01111100 T2
" 00111110 T
Yo 00011111 o

We give a look-up table for the GF(2)-linear mapping in Figure 3.7.

m S-box constant. The output byte y of the GF(2)-lincar mapping is
regarded as an clement of the Rijndael field F and added to the field
clement 63 to produce the output from the S-box.

The rationale for using the inversion operation is that it provides
good local resistance [98, 99] to the standard block cipher cryptanalytic
techniques of differential {11, 10, 68] and lincar [78] cryptanalysis. The
rationale for the use of the GF(2)-linear mapping and the S-box constant
is to increase the algebraic complexity of the S-box and to remove fixed
points respectively [37, 39].
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Diffusion layer

The diffusion layer has been designed in accordance with the wide trail
strategy [35, 39]. For the AES, the wide trail strategy is based on the
4x4 matrix over F used in MixColumns. This matrix is the parity check
matrix for a mazimal distance separable (MDS) code [76], and such a
matrix is known as an MDS matriz (Definition 2.52). A 4x4 matrix over
F operates on four input bytes and gives four output bytes. For the 4x4
MDS matrix used in MixColumns, cither all the input and output bytes
arc zero, or at least five of these cight bytes arc non-zero. This MDS
property is used to cnsurc that the number of active S-boxes involved in
a differential or lincar attack increases rapidly, and the security of the
AES against thesc particular attacks can be established.

O-inversion

When 00 is used as input to an AES S-box, inversion in the Rijndael
field F is extended, and we term this a O-inversion. The AES-128 has
10 rounds and cach round requires 16 S-box computations, so the prob-
ability of there being no 0-inversions during an AES-128 cncryption is
%%)160 =2 0.53. Similarly, the AES-128 key schedule requires 40 S-box
computations, so the probability of there being no 0-inversions during an
AES key setup is (328)%% ~ 0.86. These calculations assume statistical
independence of the 0-inversions.

3. Small Scale Variants of the AES

In this section we describe small scale variants of the AES that arc
intended to provide a fully parameterised framework for detailed analy-
sis [22]. Other small scale variants have been proposed, though usually
as an cducational, rather than an cxperimental, tool [91, 102].

Two sets of small scale variants of the AES are defined in [22] and
these differ only in the form of the final round. The two sets of variants
are denoted SR(r, ng, ne, €) and SR*(r, ng, ne, €), with SR(r, ng, ne, €)
including a MixColumns operation in the last round. Both are parame-
terised in the following way:

® 7 is the number of rounds,

®m np is the number of rows in the rectangular grid of the state,

® ng is the number of columns in the rectangular grid of the state,
m ¢ is the word size (in bits).

Both SR(r, ng, ne, e) and SR*(r, np, ne, e) have a block size of npnce
bits and the full AES is modelled by SR*(10,4, 4,8). The data block is
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Inversion in GF(2*
Input |0 12|34 (5|67
Qutput |0 |1 |9 E|D|B|7|6|F|2|C|5|A|4]38

oo
©w
£
w
(9]
o
=]
Lol

Input (0| 112|3|4|5|6|7(8|9|A|B|C|D|E]|F
Qutput {O (D |B |6 |7 |AJC|1|E|3|5|8|9|4]|2]|F

Full S-box over GF(2*) with S-box constant 6
Input 0|1|2|3/4]|5|6|7|8|9(A[B|C|D|E}F
Output | 6 | B| 5|4 12 |E|7|A|9|D|F|C|3[1]0]8

Figure 3.8.  An equivalent S-box over GF(2*) for small scale variants of the AES.

viewed as an np X ne array of words of e bits. Useful small scalc variants
exist when both ny and n¢ are restricted to 1, 2, or 4. Examples of such
arrays with words numbered in the AES style are given below.

014

02 1[5 0[2]4]%s
113 2|6 11367
307

The word sizes e = 4 and e = 8 are the most relevant and are defined
with respect to the fields GF(2%) and GF(28). The ficld GF(24) is de-
fined by the primitive polynomial 2* + z + 1 over GF(2) with root p.
Thus SR(n, ¢, e,4) uscs the field GF(2)[X]/(z* + = + 1) or cquivalently
GF(2)(p). Small scale variants over GF(2%) usc the Rijndael field F.

We define a round of the small scale variants over the field GF(24)
by describing variants of the AES operations. An S-box over GF(24)
consists of the following three (sequential) operations, which are sum-
marised in Figurc 3.8.

m [nversion. The first operation is an extended inversion in the field
GF(2%) (with 0 — 0).

w GF(2)-linear mapping. The 4x4 matrix over GF(2) used to define
the GF(2)-linear matrix is the circulant matrix

0

— = O
[ N i

1
1 1
0 1
1 1

m S-box constant. The output from the S-box is produced by adding
the S-box constant 6 to the output of the GF(2)-lincar mapping.
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The small scale equivalent of ShiftRows is the simultaneous left ro-
tation of row 7 in the data array by i positions (0 < ¢ < np —1). The
small scale equivalent of MixColumns multiplics cach column of the statc
array by an invertible circulant MDS matrix over GF(2¢). The matri-
ces required for the different variants arc all specified in [22], and they
prescrve the essential qualities of the original AES operation. Finally,
the small scale variant of AddRoundKey is the obvious analogue, with the
corresponding key schedules also being defined in [22].

These small scale variants rctain, as far as possible, the algebraic
features of the AES. They often have a small key space and can easily
be analysed by cxhaustive key search or equivalent techniques. However,
the main purpose of these small scale variants is to assist in the algebraic
analysis of the AES. Some cxperimental results based on these small scale
variants arc discussed in Chapter 6.



Chapter 4

ALGEBRAIC PROPERTIES OF THE AES

The first public comments on the algebraic structure of Rijndacl were
made towards the end of the AES selection process [67, 88, 111]. This
chapter provides a summary of much of the related work that has fol-
lowed the publication of Rijndael as the AES.

1. Round Structure

The AES design is an example of an sp-network, in which each round
usually consists of three phases [113]. The first phase is a localised
nonlinear transformation or substitution of the state, that is nonlincar
transformations arc applicd to the various sub-blocks of the statec. The
sccond phasc is an extensive linear diffusion of the entire state. The final
phase combines the state with the key material. In the design rationale
for the AES, the first phase is performed by the SubBytes operation,
the sccond phase by the combination of the ShiftRows and MixColumns
operations, and the final phasc by the AddRoundKey opcration.

The role of ShiftRows and MixColumns is to provide diffusion within
the AES. They are both lincar transformations of the cipher state over
the Rijndael field F. The ShiftRows operation provides what is termed
high dispersion, whilst the MixColumns operation provides high local dif-
fusion. The two operations combine to give a highly efficient diffusion
as required in the wide trail strategy [39]. However, in this section we
give an alternative method of analysis [38, 87, 88] for diffusion in the
AES. This analysis uses simple algebraic tools to explore the underlying
structurc of the AES component opcrations and their combination. We
begin by considering the operations in a single round of the AES.
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SubBytes operation

The AES S-box has threec component transformations, namely the
augmented inversion w — w(=Y, a GF(2)-linear mapping, and the ad-
dition of a constant (Section 3.2). The inversion opcration has proper-
ties [98] that resist standard cryptanalysis, while the other components
in the S-box are used to disguise its algebraic simplicity and to provide
a “complicated algebraic expression if combined with the inverse map-
ping” [37]. In this way, an argument can be made for the resistance of
the AES to the interpolation and similar attacks (62, 63]. Furthermore,
the S-box constant 63 was “choscn in such a way that the S-box has no
fixed points and no opposite fixed points” [37].

The final two S-box operations, the GF(2)-linear mapping and the
addition of the S-box constant 63, form an affine transformation over
GF(2). The 8x8 matrix for the GF(2)-linear mapping on a byte is given
in Section 3.2. The GF(2)-linear mapping on the entire state space
is thus given by a 128x128 matrix L over GF(2), where L is a block
diagonal matrix with blocks given by this circulant 8 x8 matrix.

ShiftRows and MixColumns operations

The ShiftRows opcration is based on the rotation of rows of the state
array. The rotation of a row by one position is represented by the 4x4
permutation matrix R over F, where

R:

— o OO
[evilan el
OO = O
O OO

If we change the basis of the state space so that the state array is rep-
rescented by the column vector

(So, S4, S8, S12, S1, S5, Sg, S13, S2, Ss, S10, S14, S, S7, S11, S15)7

then the action of the ShiftRows operation is represented by the 16x16
block diagonal matrix

I 0 0 O
0R 0 O
0 0 R2 0
00 0 R

By re-ordering the rows and columns of this matrix, we can obtain a
16x16 matrix R over F that represents the ShiftRows operation with
respect to the standard statc array ordering by column.
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The MixColumns operation is typically described in terms of the 4x4
MDS matrix over F given in Section 3.1. However, there is a basis
of F* such that the transformation given by the MDS matrix can be
represented using the matrix R. Thus there is a basis of F16 such that
the MixColumns operation is given by the block diagonal matrix

R
0
0
0

oo o
o o ©
o o ©

The 16x16 matrix C that represents the MixColumns operation with re-
spoct to the standard statc array ordering has the same algebraic prop-
crties as this matrix.

The combined action of ShiftRows followed by MixColumns is rep-
resented by the 16x16 matrix C R over F. This represents the lincar
diffusion provided by the wide trail strategy. Since both € and R are
fundamentally based on R, we can determine the simple algcbraic prop-
ertics of these constituent operations and their combination.

We can regard the state vector either as a vector over F of length 16 or
as a vector over GF(2) of length 128. In the latter casc, the ShiftRows
and MixColumns operations arc given by 128x128 matrices R and C
respectively. Multiplication by an element of F is a lincar transformation
of F considered as the vector space GF(2)%, and so multiplication is
described by an 8x8 matrix over GF(2). Thus the matrices R and C
are given by the block matrices in which the entries 1, 8 and 8 + 1 of C
and R arc replaced by the 8x8 matrices I, Ty and Ty, (Example 2.65).
The linear diffusion required by the wide trail strategy is therefore given
by the 128x128 matrix CR over GF(2). The algebraic properties of R
and C, and hence CR, are directly given by those of R and C.

Augmented linear diffusion

We have scen that the final two parts of the SubBytes operation, namely
the GF(2)-lincar mapping and the addition of the S-box constant, form
an affine operation over GF(2). Furthermore, the diffusion operations of
the AES on bytes of the state space, namely ShiftRows and MixColumns,
are also linear operations over GF(2). It is thus reasonable to consider
an augmented linear diffusion for the AES, consisting of combining the
affine transformation within the SubBytes operation with the ShiftRows
and MixColumns operations. By combining these operations into one, we
derive a very natural mathematical division of the AES round function.
The first part consists of the simultaneous inversion of all components
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of the state. The sccond part is affine over GF(2) and consists of the
composition of all other operations in the round.

The division of the round function of a block cipher into a nonlinear
part and an affine part is somewhat arbitrary, as there arc clearly many
ways in which such a division could be made. An algorithm for finding
such decompositions is given in [12]. However, given that this nonlin-
ear part is particularly simple, the division of the AES round function
into a nonlinear inversion part and an affine part consisting of all other
operations is strikingly clear.

We now give an expression for this affine second part of the AES round
function, that is the round function without the inversion operation. We
consider vectors of length 128 over GF(2), and we suppose that x is the
output of the inversion within the round, that k; is the round key, and
that 63 is the vector of repeated S-box constants. The affine part of the
AES round mapping is then given by

x  CR(Lx + 63) + ki,

where C, R, and L are the matrices discussed above. However, since
C(63) = R(63) = 63, this affine mapping is given by

x — CRLx +k; + 63.

The linear transformation of this affine mapping is thus given by the
128x128 matrix M = CRL over GF(2), and this matrix is given in
Appendix B. The matrix M is particularly simple and is only slightly
morc complicated than the linear diffusion matrix C R identified by the
wide trail strategy. We thercfore consider the augmented linear diffusion
given by the matrix M in our subsequent analysis of the AES. This allows
us to express the round function of the AES succinctly.

We now give such an expression for the AES round function. We
supposc that w and x are vectors over GF(2) of length 128, and that w
is the input and x the output of the inversion operation. We then have

N T
x = (xp,... ,3:15)T = (w(*l), e wgs U) = w("l),

where w(™1) denotes component-wise inversion. Furthermore, we can
definc a revised key schedule for the AES with round keys given by
ki =k;+63 (¢ > 0) with kjj = kg. A round of the AES is then given by

w i~ Mwh + kb

We can thercfore consider an equivalent definition of the AES round
function in which an S-box consists solely of the inversion operation.
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Matriz used in the Augmented Diffusion
C | R | CR ] L | M

Minimal Polynomial 1 a1 2241 2+ D)% | (e 4+ )P
Order 4 4 8 4 16
Dimension: Fixed Subspace 32 64 16 48 16
Dimension: Order 2 Subspace 64 96 32 96 30
Dimension: Order 4 Subspace 128 128 64 128 58
Dimension: Order 8 Subspace 128 128 128 128 96

Figure 4.1. Some properties of matrices used in the augmented diffusion of the AES.
The order ¢ subspace for the matrix T is {v|{T"v = v}.

Thus, while a design criterion for the S-box is that there be no “fixed
points” [37], the equivalent S-box in the algebraically simpler description
of the AES has two fixed points (00 and 01). The diffusion in the AES
round is now given by the augmented lincar diffusion, and a round of
the AES consists solely of the following two simple algebraic opcrations.

= A component-wise inversion over the field F.

= An affine transformation of a vector space over GF(2).

Properties of the augmented linear diffusion

We now discuss some of the basic properties of the augmented lincar
diffusion matrix M = CRL and its component matrices. We summarise
these properties. in Figure 4.1. In particular, the minimal polynomial
minps(z) of M is given by

miny(z) = (z + 1),

so minps(z) divides (z + 1)!% = 26 + 1. Thus M has order 16. This
means that any 128-bit input to the augmented lincar diffusion of the
AES will be mapped to itsclf after at most 16 repeated applications of
the augmented linear diffusion. Such a small order is notable because
it suggests that the augmented linear diffusion possesses considerable
structure, cven though it includes two of the three parts of the highly
nonlinear S-box. Furthermore, the affine transformation Ay of the aug-
mented diffusion given by x — Mx + k has order 16 since

Afx = MBx+(MB + MY+ M+ k
=Ix+(M+I)%k=x.

Further propertics of the augmented lincar diffusion matrix can be
found by applying a change of basis transformation to the matrix M.
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In particular, the augmented lincar diffusion can be represented by the
simple matrix P~1M P given in Appendix B. The simple structurc of
the augmented linear diffusion of the AES revealed by P M P gives 15
subspaces V1, ..., V15 € GF(2)1?8 such that

CFR2 =ViaVd...0Vs.

These subspaces Vi,..., Vi5 have dimensions 16, 14, 14, 14, 10, 10, 10,
8, 8, 6, 4, 4, 4, 4, and 2, respectively. They have the property that
if v € V;, then Mv; = v; + v;_1 for some v,y € V;_y (i > 1) with
Mwvy = vi. Furthermore the subspaces V}’ =V®..eV;(j=1,...,15)
arc M-invariant, that is MV, = V.

Such properties of the augmented linear diffusion of the AES suggest
several ideas for analysis of the AES, some of which are mentioned be-
low. The techniques arc bascd on those given in [84, 86] and require
some understanding of the structure and construction of these invariant
subspaces [88].

We have seen that the 16-dimensional subspace Vi = V{ is fixed by
the matrix M. Thus there are 2'6 vectors fixed by the augmented diffu-
sion. Furthermore supposc that x and x’ arc two vectors such that the
difference x + x’ € Vi, then

Mx+ Mx' = M(x+x') =x+x,

and so the augmented diffusion of the AES also fixes 216 differences. In
particular, there exist vectors that arc fixed by M and are nonzero for
only 12 of the 16 bytes of the state. Thus the usc of such a difference
in an analysis of the AES would involve only 12 active S-boxes in each
round. One such vector over GF(2) given in hexadecimal notation is

(55336600 33550066 55336600 33550066)T.

Such an analysis of the augmented diffusion matrix M cxtends to
parity checks. In this case, a parity check is a row vector e’ of length
128 over GF(2), and the parity check value of a vector x is e”x € GF(2).
Furthermore, there are also 216 row vectors el that arc fixed by the
augmented diffusion matrix M, that is e M = e”. For such a parity
check eT', any parity check value is fixed by the augmented diffusion as

el Mx = eT'x.

Similarly, any parity check value of a difference is also fixed by the
augmented diffusion as

el(Mx 4+ Mx') = T M(x 4+ x') = eT (x + x').
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However, there are such fixed parity check row vectors that only have 12
nonzero bytes, and therefore involve only 12 active S-boxes. One such
parity check row vector over GF(2) given in hexadecimal notation is

(00999900 CC5555CC 00999900 CC5555CC).

There arc many further ways in which such parity checks can be used
in the analysis of the AES. For example, we have seen above that the
126-dimensional subspace V}, is M-invariant. Furthermore, the lower
right 2x2 submatrix of P"'M P (Appendix B) shows that any cosct of
V{4 is mapped to itsclf by M. Thus we have identified a partition of
either the state space or the sct of differences into four subscts in which
this partition is preserved by the augmented linear diffusion. These four
cosets are defined by the two parity check row vectors over GF(2) given
in hexadecimal notation by

(AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAR),
(BAFO5AF0 S5AFOSAFO SAFO5AFO 5AFO5AFO),

The potential of such observations [88] has not been explored to any
great cxtent. In [89] some of this work was extended to similar prop-
ertics over F rather than GF(2), and some high probability differential
effects under related scquences of round keys were noted. While these
observations do not apply to the AES, they demonstrate that high prob-
ability differential cffects can be observed in AES-like ciphers satisfying
the demands of the wide trail strategy [37, 39]. Thus further analysis of
some of the issues raised in [87-89] may yet be of interest in the analysis
of the AES.

2.  Algebraic Representations

There can be many cquivalent ways to describe a cryptosystem. Al-
though standardisation requires the same convention to be used for data
representation, alternative representations of the cipher operations can
be of much intercst. Some representations might be helpful to implemen-
tors, perhaps as a way of improving performance or providing additional
protection against side-channcl attacks. Other representations may be
useful to the cryptanalyst in the hope that they provide further insights
to the properties of the cipher.

Alternative representations of block ciphers arc constructed by defin-
ing mappings. Suppose we have an original block cipher £ with a state
space X and key space K, and a new block cipher £’ with state space X’
and key space K'. We can now define a plaintext mapping o, a cipher-
text mapping ~, and a key mapping x between the respective spaces of
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X a(X)c X
ke — € g +— wk)ekK
X y(X)c X'

Figure 4.2. £': an alternative representation of the cipher £.

the two block ciphers such that
g, X = X and k: K — K.

We say that the block cipher & is an alternative representation of the
block cipher £ if, for all x € X and k € K,

Ern(o(2)) = v(Er(=)).

An altcrnative representation is best illustrated by the commuting
diagram of Figure 4.2. If the mapping functions are injective, then we
can replicate encryption by £ using the cipher £. We map the original
plaintext to the new plaintext with ¢ and we map the original key to
the new key with x. We then encrypt the new plaintext with £ under
the new kcy to obtain a new ciphertext. We can recover the original
ciphertext from the new ciphertext. The recovered ciphertext is what
would have becn obtainced if we had encrypted directly with the original
block cipher £. In this casc, we say that the cipher € is embedded in the
cipher &,

Cryptanalytic techniques for block ciphers can sometimes be described
by using such commuting diagrams and their generalisations. For exam-
ple, such a technique ariscs when a block cipher has linear factors or
linear structures [16, 45, 106] and such properties have the potential
to reduce the cost of key search by “factoring out” algebraically-related
encryptions.

Alternative representations where the original and new block ciphers
are identical (X' = X, K/ = K and & = &) have been termed self-dual
in [7]. The property of a cipher being self-dual under non-trivial affine
mappings is cssentially equivalent to the property of a cipher possessing
linear factors or structurcs.
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ExAMPLE 4.1 The complementation property of the DES gives a non-
trivial self-dual cipher or, equivalently, a linear structure. Let 1, and 14
denote the vectors (1,...,1)7 of lengths 64 and 56 respectively. Then
take ¢ and 7 to be the mapping z — x + 1,, and s to be the mapping
k — k+1g. These arc known as the complementation mappings and give
a non-trivial sclf-dual cipher for the DES. Alternatively, we can obtain
a linear structurc by sctting

X' = X and K’ = X

<1.’II> <1k>

to be quoticnt spaces with respective natural mappings o = v and . The
cquivalent commuting diagram to that of Figurc 4.2 can be completed
by setting

5;(,“)(0(:1:)) = Epp, (2 + 1) = Efz) + 15 0

EXAMPLE 4.2 The AES round function is self-dual. We define ¢ to be
the permutation of the state or key array bytes defined by

¢ = (S005038028501) (S10813512811) (S20523 522521 ) (S308533S32831 ).

We define the three mappings p, v, and & to be the mappings of the
state and key spaces induced by one of the permutations ¢, ¢?, or > of
the array of bytes. If we let £ denote the AES round function, then

Exry(o(x)) = v(Ek()),

so the AES round function is self-dual {73]. However, this property does
not cxtond to the full AES because of the action of the key schedule. O

Such a framework for alternative representations can be extended
stochastically. The standard statistical techniques of block cipher crypt-
analysis, such as differential and linear cryptanalysis [10, 78], can be
described using this simplc generalisation. We simply view the com-
muting diagram as holding statistically and require that the function &’
completes the commuting diagram with a suitable probability [86, 117].

Representations of the AES

A number of alternative representations have been proposed for the AES.
They exploit the structure of the cipher and arc mostly constructed by
defining homomorphisms of the AES state and key spaces.

The state space of the AES is composed of 16 bytes, where each byte
is considered as an element of the field F. The set F6 has both a vector
space structure and a ring structure with componcent-wise multiplication.
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We can therefore consider the state space of the AES with this natural
algebraic structure as an F-algebra (Section 2.3), which we call the AES
state space algebra [21].

The algebraic transformations of the state space algebra, that is trans-
formations which preserve most of the structure of the algebra, are nec-
essarily based on cither a lincar transformation or on a ring-theoretic
transformation of the state space. As the AES round transformations
are all algebraic operations, there are many opportunities to construct
alternative representations. If an alternative representation is based on
algebra isomorphisms, then we term the alternative representation an
isomorphic cipher.

3. Big Encryption System (BES)

One representation of the AES is derived by cmbedding the AES in
a larger cipher called the Big Encryption System (BES) [89]. The BES
is defined as a way to replicate the action of the AES using simple
algebraic opcrations over F. The BES operates on 128-byte blocks with
128-byte keys and has a very simple algebraic structurc. One round of
the BES consists of inversion of each of these 128 bytes and an affine
transformation with respect to a vector space of dimension 128 over F.

Embedding mapping of the AES in the BES

We denote the state space algebras of the AES by A = F!6 and of the
BES by B = F12%, The mapping to embed the AES in the BES is based
on the vector conjugate mapping ¢ : F — F8 which maps an element
of F to a vector of its eight conjugates. This mapping ¢ is an injective
ring homomorphism given by

T
g 1 2 3 4 5 6 7
a — (a2 ca? 0% a%,d%d%, a? ,a2) .

This definition can be extended in the obvious way to an embedding
function ¢ : A — B defined by

(ag,...,a15)T — (#(ag),..., d(as))7T,

which is also an injective ring homomorphism. We can therefore use ¢
to cmbed an element of the AES state space A into the BES statc space
B, and we define

Ba = ¢(A) CcB

to be the embedded image of the AES state space. We note that Ba
is a subring of B but not a subalgebra. However, Ba contains a basis
for B as a vector space, and so B is the closure of B [21]. Since the
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]
A Ba
k — AES BES «— ¢(k)
¢~1
A Ba

Figure 4.3. The relationship between the AES and the BES.

inversc mapping ¢! : Bo — A is well-defincd, the BES gives rise to
the commuting diagram of Figure 4.3. ‘

Structure of the BES

A full description of the BES is given in [89]. The inversion, ShiftRows,
MixColumns, and AddRoundKey operations in the AES with state space
A are replaced by the obvious corresponding operations for the BES
with state space B. The addition of the S-box constant 63 in the AES
is replaced by the obvious corresponding operation for the BES with
state space B, but then incorporated into a revised round key. The
remaining operation yet unaccounted for is the GF(2)-lincar mapping in
the SubBytes S-box.

The GF(2)-lincar mapping is defined by considering the Rijndael ficld
F as a vector space of dimension 8 over GF(2) [95]. This is implicitly
accomplished in the AES by the natural mapping : F — GF(2)%. The
componentwise AES GF(2)-lincar operation F — F is then defined by
a — P71(&(¥(a))), where € : GF(2)® — GF(2)8 is the lincar transfor-
mation given in Section 3.2. It is the need for the maps ¥ and 1!
which complicates the algebraic analysis of the AES. The GF(2)-linear
mapping can be rcalised by a lincarised polynomial over F (Section 2.4).
The GF(2)-linear mapping F — F is therefore given by

a — 05a2° + 0942 + F9a? + 2542° + Faa?' + 0142 + B5a2° + 8Fa?’.

This means that the GF(2)-lincar opcration in the AES S-box can be
defined within the BES by an 8x8 matrix over F. This matrix repli-
cates the AES action of the GF(2)-linear mapping on the first byte of a
vector conjugate set and ensures that the property of vector conjugacy
is preserved on the remaining bytes.
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Round function of the BES

The round function of the BES has the same simple form as that of
the AES, consisting of inversion followed by an affine transformation.
Supposc that the state at the beginning of the round of the BES is
b € B and that the BES round key is (kg); € B, then the BES round
function is given by

b - Mb 4 (kp);,

where Mp is a 128x128 matrix over F performing linear diffusion within
the BES [89]. The BES diffusion matrix Mp and the AES diffusion ma-
trix M arc closely related and share algebraic propertics. Mp is sparse
with minimal polynomial (z -+ 1)'® and related invariant subspaces. Fur-
thermore, the round function of the AES can be expressed in terms of
the BES. If the state at the start of an AES round is w € A and the
round key is k} € A, then the AES round function is given by

wi Mw 4k} = ¢! (MB (qﬁ(w)(*l)) + qb(k;*)) :

Thus the AES can easily be defined in terms of the BES.

This definition of the AES round function in terms of the BES can
allow certain algebraic properties of the AES to be scen directly. For
example, the component output functions of the inversion operation arc

related by linear transformations, which gives various results about the
AES S-box and AES round function [53, 120].

The AES embedding in the BES

The effect of the embedding mapping ¢ : A — B on the AES encryption
function is to induce an embedded cncryption function fg : B4 — Ba.
This function can be naturally cxtended to a function 7¢ :B —- B
and so the BES can be naturally considered as the closure of the vector
conjugate embedding of the AES [21].

Since the BES can be expressed using simple algebraic operations
over a single field F, this yields one particularly useful insight into the
cipher. Using the BES we are able to obtain a multivariate quadratic
equation system over GF(2%) that describes an AES cncryption. As we
see in Chapter 5, this system is sparser and simpler than the system
obtained dircctly from the AES [89]. The generation and possible solu-
tion of such multivariate equation systcms for the AES is the subject of
Chapters 5 and 6.
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4. Other Representations of the AES

We now consider some other representations of the AES [7, 8, 105]
which have been termed dual ciphers. We classify these representations
by the properties of their representation mappings.

Isomorphic ciphers

Many of the dual ciphers [7, 8, 105] are alternative AES representations
where the mappings of state and key spaces are algebra isomorphisms
of the AES statc space algebra. The resultant ciphers arc thercfore
isomorphic to the AES.

The finite ficld GF(2®) can be constructed as an cxtension field of
any of its subficlds. Isomorphic representations of GF(28) can thus be
constructed from the chain of subficlds

GF(2) C GF (2%) C GF (2%) ¢ GF (2%).

Each irreducible polynomial of degree d in GF(2")[z] can be used to
construct a finite extension of degree d of GF(2") isomorphic to GF(2"¢)
(Scction 2.4).

EXAMPLE 4.3 The polynomial z* 4 z 4 1 is irreducible in GF(2)[z] and
we denote one of its roots by p. Thus we have

GF(2)lz]

K= GF(2)(p) = @ iatD)

=~ GF(2%).
The polynomial y? -+ y + p? is irreducible in K[y]. If we denote a root of
y? +y + p3 by ¢, then we have

Kly] 8
K(¢) = (GF(2 e = GF(2°).
(€) = (GFQ)() (Q) % oy Py = OF(2")
We can then represent any element of K(¢) by a1{+ ag for some ag, a1 €
K. As ag and a1 can be naturally represented by a hexadecimal charac-
ter, we can represent such an element a1 +ap as the pair of hexadecimal
characters (a1, ap). The element p¢ € K(¢) satisfics

(pO)® + (pO)* + (p¢)® + (p¢) + 1 =0,

so there is a field isomorphism between the Rijndacl field F = GF(2)(6),
where 6 is the Rijndael root, and (GF(2)(p)) (¢) given by 0 — p¢. In
hexadecimal representation 02 — (2,0). Another cxample is given by
05— (4,7) as

0°+1 — (p0)+1 = p*(C-+p%)+1 = p*C+(p°+1) = p*(+(p*+p+1). O
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Subfield
Degree | GF(2) GF(2%) GF(2Y)
2 1 6 120
4 3 60 -
8 30 - -

Figure 4.4. The number of irreducible polynomials over subfields of GF(28).

Different representations of GF(28) can be constructed using irre-
ducible polynomials of the appropriate degree in the univariate poly-
nomial rings over subfields of GF(28) (7, 8, 105]. The numbers of
such irreducible polynomials arc given in Figure 4.4. In total there are
30+ (1-60) -+ (3-120) + (1 -6-120) = 1170 different isomorphic rep-
resentations of the Rijndacl field F based on subficlds. These different
represcntations define 1170 ciphers isomorphic to the AES.

The Frobenius automorphism z — 22 of F can be used to obtain
further isomorphic ciphers. This field automorphism can be extended in
the obvious way to give an algebra isomorphism 7 : F16 — F16 of the
AES state space. For any function f : F!® — F16 uged by the AES, we
can define a function f(# : F16 — F16 by 2 — 7(f(r~'(z))). We can
then replace f by f® and the key k by 7(k) to obtain a new cipher £®,
This new cipher is an alternative representation of the AES and satisfics

0 (7(2)) = 7(Ex()).

This representation £2) is an isomorphic cipher and has been termed
square dual [7, 8]. There are eight Frobenius automorphisms of F. If
these Frobenius mappings arc combined with subficld mappings, we can
then construct 9360 ciphers isomorphic to the AES.

These alternative representations of the AES are based on field iso-
morphisms of F. Thus it seems unlikely that they are of cryptanalytic
interest. However, such alternative representations have been proposed
to improve the efficiency of hardware implementations, most particularly
in the SubBytes transformation [39].

Regular representations

The regular representation is a standard and powerful mathematical
technique for studying an algebra [23]. Regular representations of the
AES state space algebra are discussed in [21].

A representation of an n-dimensional F-algcbra A is an algebra ho-
momorphism from A to a subalgebra of the matrix algebra M (F) (Ex-
ample 2.56). One standard represcntation is the regular representation.
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This is the algebra homomorphism v : 4 — M, (K) that maps a € A
to the matrix corresponding to the lincar transformation z — az, where
z is a vector over F of length n.

ExaMPLE 4.4 The complex numbers C form a 2-dimensional R-algebra.,
The complex number z + ty can be identified with its regular represen-
tation as a matrix, which is given by

zz(w—l—iy):( v y).

-y T

The set of all such matrices forms a 2-dimensional algebra over the real
numbers and can be identified with the complex numbers C. a

EXAMPLE 4.5 The Rijndaecl ficld F is an 8-dimensional GF(2)-algebra.
The regular representation of ¢ € F is the 8x8 matrix T, of Exam-
ple 2.65. The set of all such matrices {TyJa € F} forms an 8-dimensional
subalgebra of Mg(GF(2}). The regular representation of the Rijndael
field F as a GF(2)-algcbra is this subalgebra. O

The AES statc space can be considered as a GF(2)-algebra or as an
F-algebra. Example 4.5 shows that the regular represcentation of the
AES state space as a GF(2)-algebra is a set of block diagonal matrices
forming a subalgebra of M1a3(GF(2)). This regular representation is
given by the mapping

ap Tag 0 I 0
al 0 Ta1 e 0
. = . . . . 3
ars 0 0 ... Ty
where (ag, a1, ... ,a15)T is interpreted as a vector over GF(2) of length

128. The AES cncryption process can then be defined in terms of stan-
dard matrix opcrations.

m Inversion. For the block diagonal matrix A, this is the mapping
A ACD = A4 This is matrix inversion if A is invertible.

m Augmented linear diffusion. For the block diagonal matrix A,
there exist block diagonal matrices D; and permutation matrices P;
(0 <4 < 31) such that this lincar transformation can be defined by

31
A Z D;P,APT.
=0
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= Round key addition. For the block diagonal matrix A and round
key matrix K, this is the mapping A — A + K.

The AES state space is also an F-algebra, with regular representation
given by the algebra homomorphism F'6 — M15(F) defined by

o T 0o ... 0

1 0 =21 ... 0O
>

T15 0 0 ... I15

Thus the regular representation of the AES statce space F!6 is Dig(F),
the F-algebra of 16x16 diagonal matrices. Similarly, the matrix algebra
D12s(F) of 128x128 diagonal matrices is the regular representation of
the BES state space F!?8. This gives an embedding of an clement of the
AES subset of the BES defined by

z?’ 2 0 ... 0 0 ... 0
x%l 0 :z:%1 ... 0 0o ... O
22 =1 0o o ... o0 ... 0
:U%O 0 0 ... 0O :1:%0 .0
k 0O 0 ... 0 0 .. a%

The rcgular represcntation of the AES subsct of the BES is the sub-
ring of diagonal matrices where the octets form sets of conjugates. The
BES encryption process, and hence the AES encryption process, can be
defined in terms of the diagonal matrix B of a BES state space vector.

» Inversion. B s B(-1) = B254,

m Linear Diffusion. B + f’io DiPiBPiT, where D; arc diagonal
matrices and P; are permutation matrices.

» Subkey Addition. B — B+ K, wherc K is the regular represen-
tation of the round key.

Logarithmic representations

The AES is specified using a polynomial representation for the clements
of F. Howcver we can also represent an clement of F as an clement of
Zyss by using the discrete logarithm (Section 2.4). We can thus give
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the logarithm representation of an clement of the AES state space as an
element of the sct (Z255)16. Alternative representations based on the
logarithmic representation of F are termed log dual ciphers in [7]. There
are 128 primitive elements in F giving 128 different log dual ciphers to
the AES. Full details of how to specify a logarithm representation of the
AES are given in [7].

A multiplicative operation is easily formulated in the logarithm rep-
resentation, and an additive operation can be defined in terms of the
Zech logarithm (Scction 2.4). We can dircctly represent an element of
F as an clement of Zoss using the Zech logarithm and this gives a Zech
logarithm representation of the AES statc space as an element of the
sct (7255)16. This could lcad to a more succinet description of the AES
than the conventional logarithm representation.

Identity reducible representations

The CES [82] is an altcrnative representation of the AES. However,
representations such as the CES have a property that has been termed

identity reducible and do not appear to provide any new perspectives on
the AES [21].

5. Group Theoretic Properties

Fundamentally, a block cipher provides a succinct description for an
indexed set of permutations on the state space. Conscquently we might
try and gain insight into the structure of a block cipher by considering
block cipher transformations as clements of some permutation group.
Similarly, the constituent round functions of an iterated block cipher
also form sets of pcrmutations and may be analysed from the samc
perspective. The main theme of this section is to consider an analysis of
the AES encryption and round function transformations as permutations
acting on the AES state space.

Iterated block ciphers

Suppose a block cipher has a state space & and a key space K. For
a given key k € K, encryption under the block cipher is a permutation
ep : X — X. The set £ = {e|k € K} of all possible cncryptions of
the block cipher is a subsct of Sy, the group of all permutations of the
state space. The group G = (ex|k € K) gencrated by the sct of cipher
permutations is known as the group generated by the cipher. If G = €,
that is the set of permutations {ex|k € K} forms a group, then we say
that the cipher is a group. As G is a finite group, the cipher is a group if
and only if the set £ is closed under the operation of composition. For



64 ALGEBRAIC ASPECTS OF THE AES

such a cipher, multiple encryption offers no extra security over single
encryption.

Morc gencrally, certain properties of the group G generated by a cipher
arc of interest cryptographically [60] and attacks have been proposed
against ciphers that do not satisfy some of these properties [65, 101].
However good group theoretic properties are not suflicient to guarantee
a strong cipher [85].

Computing the group G generated by a block cipher is often difficult.
Let vy, denote the round function of the cipher under the subkey k; € s,
where K, is the space of round subkeys. The round functions vy, that
make up an encryption e, are also permutations of the state space X,
and it is often casier to calculate the various groups generated by thesc
permutations. Suppose we have an r-round block cipher with a key
schedule function K5 : K — (K,)", so that any key & € K gives risc to r
subkeys in 4. The round function permutations naturally suggest the
following three groups of relevance to the block cipher:

R = (v | keky,
P = <Ukr <o Uk Uiy | k; € /CS>,
G = (”U}Cr...’ulkal!KS(k)Z(kl,.‘.,k)r,-»:<£k ‘ kG’C)»

Thus R is the group generated by the round functions and P is the group
generated by an arbitrary composition of r round functions. The group
G generated by the cipher can also be regarded as the group generated
by any composition of r round functions permitted by the key schedule.
The relationship between these groups is that G is a subgroup of P, and
P is a normal subgroup of R (G < P <R). Thus the group generated by
the round functions upper bounds the group generated by the cipher.

EXAMPLE 4.6 Properties of the groups generated by the DES have been
extensively researched. Initially, it was observed that the cycle structures
of certain permutations could be used to provide a lower bound on the
order of the group G gencrated by DES [24]. Subsequently, the cycle
structures werce extensively analysed [15, 65, 83, 103, 104] and wcre used
to show that |G| > 256, so the DES is not a group [15, 25].

The DES round function under any key, and hence any DES encryp-
tion, is an even permutation. Furthermore, the group R generated by
the round functions of the DES is the alternating group Ages on the
state spacc of the DES, which is a large, simple, primitive and highly
transitive group [118]. Thus the group P < R gencrated by the compo-
sition of any fixed number round functions is also the alternating group
Agos. It follows that the group G generated by the DES is a subgroup
of the alternating group Ages, although little more is known about its
structure. a
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Cycle structures

We now discuss the cycle structures of the diffcrent operations in the
AES round function when considered as permutations of the state space.
Some related results are given in [40, 73].

We first consider the permutation m;; of the AES state space of sizc
2128 given by the application of the AES S-box to the byte Sij, whilst
fixing the other fifteen bytcs. The action of the SubBytes opcration
on the AES state spacc is given by the permutation mgg...w33. This
permutation is the 16-fold product of permutations with the same cycle
structure. Thus the SubBytes operation is an cven permutation of the
AES state space.

We now consider the ShiftRows and MixColumns opcrations. Wc saw
in Section 4.1 that these operations could be defined in terms of the
application of the permutation matrix R to four bytes of the AES state
space, whilst fixing the other 12 bytes, with respect to some basis. We
denote the permutation of the AES state space given by an application
of the permutation matrix R, with respect to the appropriate basis, to a
row ¢ by 7(#) and to a column j by 7(%). The ShiftRows operation and
MixColumns operations arc then given, respectively, by the permutations

(£ ) ()" s (x9) (s) (59) (s,

Thesc are 6-fold and 4-fold products of permutations with the same cycle
structure. Thus both the ShiftRows operation and the MixColumns
operation arc even permutations of the AES state space.

We finally consider the AddRoundKeys opcration. It is clear that
the AddRoundKeys opcration is the product of 2'%7 transpositions for
a nonzero round key and the identity transformation for a zero round
key. Thus the AddRoundKeys operation is an cven permutation.

All opcrations used by the AES round functions are therefore cven
permutations of the AES state space, and so we have Theorem 4.7.

THEOREM 4.7 The AES round function is an even permutation.

The cycle structures of cach component of the AES round function
can be largely deduced from Figure 4.1 and arc given in Figure 4.5.
We note that the AES S-box permutation on the 28 clements of F has
five disjoint cycles of lengths 87, 81, 59, 27 and 2, and so is an odd
permutation [119]. Detailed analysis of various permutations generated
by the AES round functions gives Theorem 4.8 [119].

THEOREM 4.8 The group R generated by the AES round functions is
the alternating group Aqizs.
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Number of cycles Permutation

fized order 2 order 4 parity
Inversion 216 271(2128 _ 916 0 Even
GF(2)-linear 248 271(296 — 918y 272(p128 _ 996y Even
S-box constant 0 2127 0 Even
ShiftRows 204 971298 — 204y 272128 _ 296y Even
MixColumns 232 271(254 — 232y 972128 _ 964y Even
AddRoundKey 0 2127 0 Even
(0 Round Key) | (2'*%) 0) (0) (Even)

Figure 4.5. The cycle structure of the different AES components.

This means that the group P for the AES is also the alternating group.
This implies that “from the algebraic point of view some thinkable weak-
ness [of the AES] can be excluded” [119]. We note that the group G gen-
erated by the AES is not just a simple composition of round functions,
since there is an initial AddRoundKey operation and no MixColumns op-
cration in the final round. However the resulting round opcrations are
even permutations, and so we also have G < Agizs.

Byte diffusion group

Suppose that G is a group of permutations of the 16 state array bytes,
so G < Si. Each clement g € G can be used to define a permuta-
tion ga € Sa of the AES state space A = F16 which we define in
Figure 4.6. Furthermore, such mappings can be extended to give the
mappings (99')a, ga + ga, and A-ga (9,9’ € G and X € F) of the AES
state space A. These mappings arc also defined in Figurc 4.6. Thus any

formal sum
Z Agg [Ag € F]
e

can be used to define a mapping (ZyEG /\gg>A of the AES state space
A given by
T
(Soo, -, S33)7 = Z Ag (Sg000)s - - - Sy(33))
geG

The set of all such formal sums of elements of G under the obvious rules
of addition and multiplication forms an algebra, known as the group
algebra [23] of G over F, and is denoted by F[G].

We now discuss the permutations of the 16 state array bytes nceded
to define the ShiftRows operation and the MixColumns opcration. Both
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Mapping Definition |

ga (So0 -+ S33)" — (Sgeo0y: - -+ Syism)
(99)a | (Soo,-,833)" = (Sgaro0ys -+ » St 33))
ga +ga | (Soo, .., Sa3)" = (Sq000) + Sy 00y - - » Sgazy + Sgr(33))
A-ga (Soo, ..., 833)" — (ASy00), - - ~»/\59(33))T

T

Figure 4.6. Definitions of some mappings on the AES state space A.

of these operations can be defined in terms of a specific permutation of
the 16 bytes of the state array. Thus cach operation can be defined in
terms of a single clement of the group algebra F[S;g]. The permutation

0 = (S10513812811) (S820522) (S21823) (5305315328533

is the byte permutation defined by the ShiftRows opcration. Thus the
group algebra element A =1 g € F[S1g] gives the mapping A A, which
is the ShiftRows opcration. Similarly, a simultancous rotation of all the
columns in the state array by onc position defines the permutation

§ = (S00510520550) (S01511521531) (S025128522832) (S038135238533) .-
We can then define the group algebra element I' € F[Sy¢] by
F=0-e+(@+1) c+1-¢2+1-¢3

where e denotes the identity clement of Sig. The MixColumns operation
is then given by the mapping I'a. The byte diffusion of the round
function of the AES is given by the ShiftRows operation followed by
the MixColumns operation. Thus Ap = (I'A)a specifies the diffusion,
where the group algebra element A € F[Syg] is given by

A=TA=0-0+@+1)-co+1-c°0+1-0.

The mixing between the bytes required by the wide trail strategy
is therefore given by the two elements A and I' of the group algebra
F[S16], which depend entirely on the two permutations ¢ and ¢ of Sie.
Thus if we define the subgroup H = {p,¢) < Sig, then the ShiftRows
operation and the MixColumns opcration are given by clements of the
smaller group algebra F[H]. The byte diffusion within the AES required
by the wide trail strategy can therefore be defined in terms of the group
algebra F[H], and so we term H the byte diffusion group of the AES.

We now consider this byte diffusion group H = (g,<). We first note
that both ¢ and ¢ arc cven permutations so H < Ajg. In order to discuss
the diffusion group H, we define the permutation ¢ = ¢os™ ot € H, so

© = (Sp0S03502501) (S10513812511) (S20523822821 ) (S3085335328531).-
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The permutation ¢ corresponds to a simultaneous rotation of all rows
by one position. We further note that ¢ commutes with both ¢ and p,
so A(1-¢) = (1-)A. This obscrvation shows that ¢ is a permutation of
state array bytes that can be used to define a self-dual round function
for the AES (Example 4.2).

In order to describe the byte diffusion group H, we define the subgroup
Hy = (<) < H and the normal subgroup N = (g, ¢} <H. Elements of the
subgroup Hy permute the rows of the statc array, whereas elements of
< the normal subgroup N act entirely within cach row. The subgroup Hy
is isomorphic to the cyclic group C4 with four elements, and the normal
subgroup N is isomorphic to Cy x Cy4 and so has 16 elements. Further-
more, we can show that any element of H can be expressed uniquely as
a product of an element of its normal subgroup N and an clement of its
subgroup Hg. It follows that the byte diffusion group H of the AES is
the semidirect product [23] of N by Hp and so has order 64.

This formulation of the byte diffusion group H shows that its action on
the state array has two distinct parts. It can be divided into the action
of the normal subgroup N acting entirely within cach row and the action
of the subgroup Hy which permutes the rows. Such a property means
that I is an imprimitive group (Section 2.1) and that each row of the
state array is a block of imprimitivity. More gencrally, we have shown
that any bytc diffusion generated by the lincar diffusion (ShiftRows and
MixColumns) part of the AES round function can be given by a formal
sum of elements from a small byte diffusion group H of size 64. This
AES byte diffusion group H is small and structured in comparison to a
possible byte diffusion group Sig.

Such analysis extends to the BES state space F128, A byte diffusion
group for the BES of size 512 is obtained, which is a subgroup of Ajsg.
This diffusion group is isomorphic to the direct product (Example 2.5)
of the cyclic group with 8 clements and the AES diffusion group H.

Geometric properties

The operations used in the AES can be viewed as geometrical trans-
formations. Inversion in a finite field is a geometrical transformation
in projective geometry, while the augmented diffusion and round key
addition form an affinc transformation of a vector space. This leads to
some observations about some geometric properties of the AES. These
observations are projective in nature and are discussed more fully in [61].
We briefly discussed projective spaces in Section 2.5. However, our dis-
cussion below is based on the projective linc F of the Rijndacl field F,
which we define in Definition 4.9.
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DEFINITION 4.9 Let F be the Rijndael field and F? the vector spacc of
dimension 2 over F. The projective line F of the Rijndael field is the set
of one-dimensional subspaces of the vector space F2 under the action of
the group of invertible linear transformations of F2.

The points of the projective line F are all the one-dimensional sub-
spaces of F?, so

F={(L2)|zeFIu{(01)}

The projective point {(0,1)) is known as the point at infinity, so we can
regard the projective line F as F U {co}. The group of transformations
on F is known as thc Projective General Linear Group PGL(2,F), a
group of order 28(216 — 1), Furthermore, PGL(2,F) is a sharply triply
transitive group (Section 2.1), which mcans that action of an clement
on three projective points uniquely identifics that clement.

The potential for a geometrical approach can be seen by the analysis
of two simple block ciphers with state spaces F and F respectively given
in Example 4.10.

EXAMPLE 4.10 Two ciphers C and C with state spaces F and F respec-
tively are defined below (with the conventional interpretation for co).

Cipher (| State Space { Round Key | Round Function | Definition
C F keF fi: FoF |zeoatD 4
C F keF fu:F—F T = % +k

The round functions f, and fi of the two ciphers agree on F unless a
O-inversion takes placc. Thus the ciphers € and C transform a given
plaintext to the same ciphertext for most plaintexts.

We now consider the two groups

R = (fulkeF) = Sym(F)
and R = (frlkeF) = PGL(2F)

gencerated by the round functions for the two ciphers (Section 4.5). We
sce that the round functions of C generate the symmetric group on F,
80 we would require many plaintext-ciphertext pairs to determine the
cipher transformation. By contrast, the round functions of C gencrate
PGL(2,F), so only three plaintext-ciphertext pairs arc needed to deter-
mine the cipher transformation.

However, C and C cncrypt most plaintexts in the same way. Thus
the overall cipher transformation of C can also be determined with three
plaintext-ciphertext pairs with high probability. A
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The analysis given in Example 4.10 is cssentially a group-theoretic
explanation of the interpolation attack [62, 63] for this type of block
cipher. Furthermore, Example 4.10 shows that a practically insignificant
change to the definition of the group action being considered can yield
a very different group. Morcover, in this case the group R generated
by the modified group action is a far more accurate indicator of the
cipher’s resistance to an algebraic attack than the group R genecrated by
the unmodified group action.

Further discussion of the projective aspects of the AES is given in [1,
27, 61]. Such analysis yields results such as the characterisation of the
difference table used in differential cryptanalysis [10, 11] for the AES
inversion operation {61]. Similar projective constructions for the entire
AES statc space F1 may yet be of future interest.



Chapter 5

EQUATION SYSTEMS FOR THE AES

The idea of breaking a cryptosystem by solving a system of equa-
tions is not new. Shannon states in his landmark paper that breaking a
cryptosystem should require:

...as much work as solving a system of simultaneous equations in a large
number of variables [113].

Even prior to this, the cryptanalysis of many historical ciphers might
be described within such a framework. For example, some devices uscd
to analyse the Enigma cipher at Bletchley Park, such as the bombe,
were fundamentally devices that checked the consistency of equation
systems [64].

More recently, some early attempts to understand and cryptanalyse
the DES were based on describing a DES encryption as an cquation
system. An early report on the DES [56] explicitly considered the task
of writing bits of the output from the DES S-boxes as equations involving
the six input bits to an S-box and using such cxpressions as a basis for
an attack. However this report was optimistic in stating that:

“These expressions indicate that an attempt to solve for K [key] in terms of
P [plaintext] and C [ciphertext] may result in a simpler set of equations than
one would expect.”

Following a more detailed analysis of the DES equation system [109],
such attempts to analyse the DES by solving an cquation system were
largely abandoned. However, as motivation for the analysis of an AES
equation system, we observe that equations lying at the heart of the AES
appear to be much simpler than those for the DES. We can illustrate this
by considering the expression for the most significant output bit x; of
the first DES S-box in terms of the six input bits wiwowswswsws [109].
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This expression is given by

z1 W WrW3WWe + W1 WaW3WsWe + W1WaW3W4 + W1 WawW4Ws
W WeWaWe -+ W{WWsWeg + W1 W3W4Ws + W1W3W4We
W WW4 + W WIW4 + WIW3Ws -+ WiW4We + WawWawWy
W3W4Ws + W3W4We + WaWsWe
WIWq + WiWs + Wwowsg -+ wWawy
wy + wo + wg + ws + wg + 1.

A+

Even if we consider equations between the input bits and all of the
output bits zizoxzxy of the first DES S-box, the simplest equation we
obtain is the quadratic equation

0 WIWe + WoWs + Wryg + Wy + Wolg + W1 + Wk + W3T1
W4T + Wsx1 + Wex1 + W1T2 + Wy + W3Ty + W4T + WsL2
WeT2 + W1T3 + Wak3 + W3T3 + Wal3 + WsT3 + Wex3 + Wi1T4
W34 + WaZTg + W5T4 + WTg + T1T4 + ToT4 + L3T4

w1 +wo + w3 + wq + ws +weg +x1 +x0+ x5+ 24+ 1.

o+

This complicated equation is the only quadratic equation relating the
input and output bits of the first DES S-box. By contrast, there is a
very simple quadratic equation over the Rijndaecl field F that relates the
input and output of the AES inversion, which is the only operation in
the AES that is not lincar over GF(2). The relation over F between the
non-zero input w and the output x of inversion is given by

wx = 1.

This simple fact has spurred much of the research we discuss in the
following chapters.

1. Basic Approaches

The simplest equations, at least in terms of the number of variables,
would be equations in the plaintext, ciphertext, and key, as described in
the above quotation from [56]. In this section, we describe one generic
method and one method specific to the AES for deriving such equations
for a block cipher encryption.

Interpolation

The interpolation attack is a method for the cryptanalysis of a block
cipher whose encryption function can be expressed in terms of a uni-
variate polynomial function of moderate degree [63]. Suppose we have
such a block cipher with state space given by a finite field F and (d+ 1)
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plaintext -ciphertext pairs (p;, ¢;) € F2 (i = 0,...,d). The Lagrange In-
terpolation Formula (Theorem 2.28) states that the unique polynomial
function f: F — F mapping p; to ¢; is given by

If the block cipher encryption can be expressed as a polynomial function
of moderate degree d, then the encryption operation is given by the above
polynomial function f. This function can then be used to encrypt any
plaintext, or to decrypt any ciphertext, without knowledge of the secret
key. The attack can be slightly modified to give an cquation containing
the key, which would then allow recovery of the secret key.

The interpolation attack can be adapted to some block ciphers that
usc the same inversion mapping w — w(~Y as used in the AES. Thus
the interpolation attack illustrates some of the potential issues involved
in using simple algebraic operations within an iterative cipher, even if
these componcnts can be used to make a block cipher that is cxtremely
resistant to other types of cryptanalysis.

Algebraic expressions

Some algebraic expressions for an AES encryption were given in [52].
We now discuss how to derive such an expression.

The AES S-box consists of the composition of threc simple algebraic
operations, namely an inversion operation, the GF(2)-lincar mapping
and the addition of the S-box constant 63 (Section 3.2). The inversion
operation in the S-box is given by w — wt™D = w4 and we saw in
Scction 4.1 that the GF(2)-linear mapping in the S-box is given by the
lincarised polynomial function

z — 0522 + 0922 + Foz? + 2522° + Faz? + 012% + B52?® + 8Fx?’

The final part of the S-box is the addition of the S-box constant 63.
Thus the AES S-box is given by the polynomial function over F

7
w (Z /\iw255_21> + 63,

i=0
where the coeflicients A; are given above.
This form for the modified AES S-box can be used to express the

full AES cncryption operation as a sct of 16 polynomials over F. Each
polynomial expresses a particular ciphertext byte as a function of the
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plaintext and key bytes. However, these polynomials are extremely large
and dense, and they are not practically soluble.

We can simplify these expressions under the assumption that no 0-
inversion occurs, an cvent that happens with probability 0.53 (Sec-
tion 3.2). We can then incorporate the S-box constant 63 as part of
a modified key schedule to give a modified S-box consisting of just the
inversion operation and the GF(2)-linear mapping (Section 4.1). For a
nonzero input w, the modified S-box is given by the mapping

7 .

9t

w»—>§ Aw 2z
i=0

We can then use this expression for the modified S-box to give an cx-
pression for an AES cneryption using a form of continued fractions. In

this way, cach byte of the state space after five AES rounds, Si(‘;’-), is
given by
(5) _ Cs
Si’j~K+ZK*+ZK+Z i ’
* *
K*+% _K*+Z F‘%p*
where p, C; and K correspond to plaintext bytes, known constants, and
cxpanded key bytes respectively, with * indicating a known exponent or
subscript [52].
A fully expanded expression for five rounds has around 2%° terms of the

type K*Lﬂ]:, whilst the expression for the full 10-round AES encryption

has around 2°0 terms. A type of meet—in the middle approach, using
the expressions for encryption for the first five rounds and decryption for
the remaining five rounds, has been proposed to obtain equations with
around 226 terms [52].

This technique gives risc to very compact algebraic expressions for an
AES encryption operation. Other block ciphers do not seem to have this
property. For cxample, it is estimated that an algebraic expression for
a DES encryption would contain 204 terms [52]. The AES, which has
a much larger key and block size, nevertheless has a much smaller al-
gebraic expression for encryption. While there is no algorithm that can
practically solve these types of cquations, their existence provides addi-
tional motivation in the scarch for morc amenable systems of equations
describing an AES cncryption.

2. Equation Systems over GF(2)

An AES equation system consists of two parts, namely an equation
system for encryption and an cquation system for the key schedule. The
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equation system for one encryption treats the plaintext and ciphertext
valucs as constants and uses state variables specific to that encryption.
Thus different encryptions have different equation systems. The equa-
tion system for the key schedule depends only on key variables, and
therefore is common to all encryptions under the same key.

This scction gives a derivation for an equation system over GF(2)
that describes an AES encryption. The AES key schedule uses the same
operations as the AES encryption function, so the derivation of a cor-
responding equation system is very similar. This equation system uses
statc variables given by the input and output of the inversion mapping
at every round and, as key variables, the round keys. Thus this basic
equation system for an AES cncryption has 10 - 128 = 1280 inversion
input and output variables, giving a total of 2560 statc variables. The
equation system for an AES cncryption can be expressed in terms of
these 2560 state variables and 11 - 128 = 1408 round key variables.

Linear equations

In Section 4.1, we show that the augmented diffusion matrix M over
GF(2) can be used to map a vector representing the output of all 16
AES inversions in one round to a vector representing the input to the
AES inversions in the succeeding round. This mapping is given by x —
Mx + k7, where x is this inversion output vector and kJ is the modificd
round key. There are similar affine mappings which relate the plaintext
to the input of the AES inversions in the first round and the output
of the AES inversions in the final round to the ciphertext. Thus there
are 11 - 128 = 1408 lincar cquations in this system. Furthermore, these
linear equations arc very sparse due to the round structure of the AES.

Nonlinear equations

The nonlinear rclations in the AES equation system arise from the AES
inversion operation. In order to give a complete cquation system over
GF(2) for encryption, we nced to establish nonlinear cquations relating
the componcnts of the input and output of an AES inversion function.
The usc of multivariate quadratic cquations over GF(2) to describe the
relationship between inversion input and output was discussed in [31, 32].
We give a simple derivation based on lincar algebra. We note however
that the multivariate cquations presented here differ from the ones given
in Appendix A of [31], which consisted of multivariate quadratic equa-
tions for the whole S-box opcration rather than just the inversion op-
cration. Howcver, as the output of SubBytes is the result of an affine
mapping over GF(2) of the inversion output, a simple lincar substitution
of the z variablcs in the equations of Appendix A gives those in [31].



76 ALGEBRAIC ASPECTS OF THE AES

The defining relation over F between the input w and the output x
of an AES inversion is clearly wz = 1 (unless both are zero). We now
consider how this relationship between the field elements w and z can be
translated to their components when w and z are considered as vectors
of length 8 over GF(2).

The mapping z — 0z describing the multiplication by 8 in F is given
in the vector space GF(2)® by the linear transformation z — Tyz, where
the matrix Ty is given in Example 2.65. This can be extended to the
mapping z — wz describing the multiplication by any element w € F.
This multiplication corresponds to the linear transformation z — Cyz,
where Cy, is a 8 x 8 matrix over GF(2) with the vector Tg‘iw in column
i, that is

Co=(Tjw|Tgw| ... | Tow|w).

The vector in GF(2)® corresponding to the product wz in the field F is
given by Cyz (Appendix A).
For the casc of the AES inversion, we have

Cpz = (0,0,0,0,0,0,0,1)7

unless a O-inversion has taken place. In this case, we have w = z = 0,
and Cyx is the zero vector. Thus the first seven components of Cy,z are
identically zcro, which give us seven quadratic equations over GF(2) in
the components of w and x. Unless a O-inversion takes place, the last
component is identically 1, giving us a further equation over GF(2) with
probability % Thus the above matrix equation gives seven multivariate
quadratic equations over GF(2) as well as another cquation with high
probability. Furthermore, we note that these are bilinear equations in
the w and z variables.

In addition to the equations above, we can derive further equations
from the ficld equation wz = 1. We clearly have wz? = z and w?z = w.
These two cquations can be expressed as the matrix equations

(CwS+ Nz =0and (C,S+NHw=0,

where S is the matrix for the squaring map (Example 2.65). Thesc
vectors arc also given in Appendix A. These two matrix cquations give
us 16 further multivariate quadratic equations over GF(2). These are
biaffinc cquations in the w and z variables.

We note that the cquations wz? = 22? and wz = ww?, which arc
equivalent to the matrix cquations

(CwS? + Cp)z = 0 and (CS% + Cp)w =0,

also give rise to 16 further quadratic equations over GF(2).
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In total we have 39 multivariate quadratic equations over GF(2) that
relate the input and output of an AES inversion. In addition, a fur-
ther cquation is valid with high probability. However it may sometimes
be advantageous just to concentrate on the simpler bilinear or biaffine
equations, obtaining a total of 23 multivariate quadratic equations over
GF(2), as well as another equation which holds with high probability.

Equation finding

The question arises whether we have identified all quadratic equations
in the w and « variables for the AES inversion operation. This question
can be answered using linear algebra. For simplicity, we consider how
to identify all bilinear forms in the w and x variables.

Suppose a € F*, and lct a; and @; denote the components of a and a
when considered as vectors of GF(2)8. We can then define a € GF(2)%
to be the vector

a = (ag@o, ao@1, Aol . - - , a7, a7dr)

If we have a bilinear equation

7

0= E Cij Wik 4

7
=0 j=0

over GF(2) in the components of w and z of an AES inversion function,
then let ¢ = (ei;) denote the vector of bilinear equation coefficients. For
any a € F*, we have alc = 0 and we can construct a 255x64 matrix A,
with rows given by the corresponding vectors a’, such that Ac = 0. The
coefficicnts ¢ for which the above bilinear cquation holds arc given by
ker(A4), and we can find all such bilinear equations. This technique can
be extended to biaffine and general quadratic equations by extending
the set of monomials.

Using this method we can show that we have identified all quadratic
equations over GF(2) in the input and output of the AES inversion
operation. Morc generally, this kernel technique can be extended to find
polynomial equations between the input and output of cryptographic
functions such as S-boxcs by using an appropriate matrix A.

A sparse equation system

We arc now in a position to give equation systems over GF(2) for the
AES. The equation system described here is very sparse, in which the
variables represent the input and output of the inversion operations and
the round keys. We also require some auxiliary key variables in order to
describe the key schedule.
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Source
State Key Total
[ Variables | 2560 1728 | 4288 |
Source
Encryption  Key schedule | Total
Field equations 2560 1728 4288
Linear equations 1408 1280 2688
Inversion equations 6400 1600 8000
Overall equations 10368 4608 14976

Figure 5.1. The number of variables and equations in a sparse quadratic equation
system for the AES.

We first note that since the ecquation system is over GF(2), any vari-
able z satisfics the fleld equation 22 4 2z = 0. In the cquation system for
an AES encryption, as well as the key variables there are 1280 inversion
input variables w and 1280 inversion output variables x. These variables
are used in 11-128 = 1408 linear equations and they give 2560 ficld equa-
tions. If we assume that encryption does not contain a O-inversion, there
are 160 inversions in an encryption with 40 quadratic equations for each
inversion, giving 6400 quadratic cquations in total.

In the AES key schedule, there are 11-128 = 1408 round key variables.
The inversion function is only applied to four of the sixteen round key
bytes at every round, so the key schedule uses 40 inversions. In order
to describe the key schedule using sparse quadratic equations, we add
the components of the output of the key schedule inversion as variables.
Thus there are 320 inversion output variables, giving 1728 key variables
in total. If there arc no O-inversions in the key schedule, we obtain
40 - 40 = 1600 quadratic equations, 1728 field equations, and 10 - 128 =
1280 linear equations in the key schedule.

This sparse quadratic equation system is summarised in Figure 5.1.
We sce that overall we obtain a system with 14976 cquations in 4288
variables. We note that any equation system for the AES is somewhat
arbitrary, and the choice of an equation system for the AES depends
to some extent on the intended use of the system. For example, the
quadratic cquations for the AES inversion given in [31] are morc com-
plicated than thc ones given in Appendix A, but the associated linear
equations are much simpler. Furthermore, we can always use linear
equations to eliminate variables by simple substitution so as to give a
system with fewer variables, though generally at the cost of making the
nonlinear equations more complex.
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Source
State Key Total
| Variables l 1280 320 I 1600 |
Source
Encryption  Key schedule | Total
Field equations 1280 320 1600
Inversion equations 6400 1600 8000
Querall equations 7680 1920 9600
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Figure 5.2. The number of variables and equations in a compact quadratic equation
system for the AES.

A compact equation system

We can produce a more compact equation system by using linear equa-
tions in the AES system to substitute and climinate variables. We first
consider the linear relations in the encryption process. We let w; and x;
denote the input to and the output from an AES inversion respectively,
and we let k; denote the round key and 63 the vector of repeated S-box
constants. These are considered as vectors of length 128 over GF(2).
For plaintext p and ciphertext ¢, AES encryption is described by

wyp = p+kyp+63
w; = Mx;_1+k;+63 [i=1,. .,9]
¢ = M*xg+kjg+63,

where M™ is the modificd matrix for the final round. We thercfore write

Mgl(W¢+1+ki+1+63) [120,...,8]
(M*)7 (kyo + ¢ + 63)

Xi

X9

and eliminate the 1280 variables arising from the vectors x; (0 <7 < 9).

We now consider linear relations in the key schedule. Some related
issues are considered in [2]. Let s; denote the 32-bit output vector of
the inversion opcration in the AES key schedule. The output of the F-
function of the key schedule is given by @s; + Qr;, where @ is the 32x32
matrix over GF(2) corresponding to the byte rotation and r; is a round
constant vector of length 32. The relationship between successive round
keys is given by

K®

i I 000 E-)l Qs 1+ 1‘141)
kYl | r1oo0 k) o | Qsia+rin)
kz@) 1110 kg'{)l Q(si—1 +ric1) |
k(3) I 111 k(3) Q(Si~1 + rzfl)

% i—1
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where kgj ) denotes a vector of length 32 corresponding to a column of
the round key array. Thus there exist a 128x 128 matrix A and a 128x32
matrix B over GF(2) such that

2
k;=Ak; 1+ B (Si~1 + ri—l) = Alko + Z AiB (Sz’—j + 1‘,',]') .
j=1

If we use the relation kg = wg + p + 63 from the encryption, we have

% 7
k; = AiW() + Z AjleSifj + Z Aj*lBri“j -+ Ai(p + 63),
Jj=1 =1

and we can climinate the 128 - 11 = 1408 variables that refer to the
vectors k; (0 <4 < 10).

We have used the linear equations in the AES system to eliminate
1280 + 1408 = 2688 binary variables, and can now express the AES
encryption in terms of 4288 — 2688 = 1600 variables. These variables
consist of the 1280 input variables w from the inversion operation in the
encryption and the 320 key variables that are the output of the inversion
operation in the key schedule.

This compact quadratic cquation system is summarised in Figure 5.2,
where we sce that an AES encryption can be described by an equation
system with 9600 quadratic equations in 1600 variables. Of thesc 9600
quadratic cquations, 1600 are field equations and 8000 arc from the
inversion operations. We notc that some of these quadratic equations
are more complicated than others, and a sparser system can be obtained
by considering the 4800 equations arising from thc quadratic cquations.

Equation system for the DES

For the purposes of comparison with the AES, we describe an equation
system for the DES. We have alrcady scen a quadratic equation for the
first DES S-box at the beginning of this chapter. However such quadratic
equations for a DES S-box are rare. There are only six other quadratic
equations relating the input and output bits of a DES S-box: five for the
fourth S-box and onc for the fifth S-box [114]. Thus it is not possible
to describe a DES encryption in terms of quadratic polynomials over
GF(2) in the state variables.

We thoerefore consider cubic polynomials. There are ten binary vari-
ables for a DES S-box, so there are (1:,?) + (120) + (110) + (100) = 176 mono-
mials of degrec at most three in these ten variables. We can find cubic
polynomials satisfied by these ten variables using the cquation finding
kernel technique described earlier. This requires us to find the kernel
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of a 64x176 matrix over GF(2). Such a matrix for a DES S-box has a
kernel of dimension at least 176 — 64 = 112. We can thus fully describe
a DES encryption using a cubic cquation system in these variables, and
the number of equations in such a system can be calculated using the
figures given in [114]. We note that the nonlincar equations for the DES
do not seem to possess any obvious structure, unlike those for the AES.

3. Equation Systems over GF(2®)

We now derive an equation system over the Rijndael ficld F to describe
an AES encryption [89]. In Secction 4.3 we introduced a block cipher
called the Big Encryption System (BES) and showed that the AES could
be represented as the BES with a restricted message space. The equation
system over F that we give below is bascd on this rcpresentation. It is
clearly much simpler than the cquation system over GF(2) discussed in
Section 4.2.

BES equation system

The state space of the BES is B = F128 and the typical round function
of the BES is given by

bk»AlB(b“40-+(kB%,

where Mp is the lincar diffusion matrix given in Section 4.3 and kp; is a
BES round key. Similarly to the AES, we denote the state vectors before
and after the inversion operation by w; € B and x; € B (0 < ¢ < 9)
respectively. The encryption of plaintext p € B to ciphertext ¢ € B by
the BES is then described by

wg = p+tky

X = wiV [i=0,...,9

w;, = Mpx;1+k; [i=1,...,9]
c = Mgxg+kio,

where M} is the modified version of matrix Mp for the final round. If
we denote the components of x; by @ (jm) (0 < j < 15and 0 <m < 7),
we obtain the following system for a BES cncryption

Wo,(jm) = Mm3+%mm

Ti(jym) — wz(,(j,m) [Z =0,... 79]

Wi (5,m) = (]\/[§xifl)(j,m) + ki,(j,m) [7' =1,..., 9]
C(jm) (MEX9) (jm) + k10,(,m)-
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Under the assumption that O-inversions do not occur as part of the
encryption (Scction 3.2), this equation system becomes

0 = wo,Gm) +P(im) + Ko,(jm)

0 = xi,(j,m)wi‘(j,m) +1 [Z = O’ E) 9}
0 = wiGm) + (MBXi—1)m) t Ki,(jm) [f=1,...,9]
0 = cm) + (MEX0)(m) + Fio,¢m)-

AES encryption embedded in the BES

An AES encryption can be embedded in the BES, so the above equa~
tion system for a BES encryption also describes an embedded AES en-
cryption. However, the embedded state variables of an AES encryption
are clements of Ba, the AES subset of B, and so possess the conju-
gacy property. This conjugacy property gives us further multivariate
quadratic equations. Thus embedding an AES encryption in the BES
gives the cquation system over F (where m + 1 is interpreted modulo 8)

0 = Wo,(j,m) T P(m) T ko,(j,m)

0 = WigGm) + Ki(m) + (MBXi-1)(jm) li=1,...,9
0 = ¢my + K10,G,m) + (MEX0)(j.m)

0 = T, G,y We, (4,m) +1 [’L =0,... ,9]
0 = 27 T TiGm+1) [i=0,...,9]
0 = wj; .+ Wimi1 [i=0,...,9].

Similarly, we can obtain an cquation system for the AES key schedule
cmbedded in the BES. This key schedule equation system has 1408 round
key variables that arc also used in the cncryption cquations and 320
auxiliary variables, which are the output variables for inversion in the
key schedule.

The BES gives an cquation system for the AES over F. Every cquation
and variable has a counterpart in the equation system over GF(2) for
the AES (Section 5.2). Figurcs 5.1 and 5.2 thus describe the number
of cquations and variables for AES cquation systems over F. We note
however that the cquation systems for the AES over F are extremely
sparsc compared with the corresponding equation systems over GF(2).
In particular, every quadratic cquation in the sparsc system of Figure 5.1
has only one nonlinear term. Furthermore, every quadratic equation in
the compact system of Figure 5.2 is much simpler than the corresponding
equation over GF(2).

Small scale example

We illustrate an equation system over F by considering small scale vari-
ants of the AES (Scction 3.3). We give the entire equation system over
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GF(2%) in Appendix C for the small scale variant SR(2, 2, 2,4), which has
two rounds and a 2 x 2 statc array of clements of GF(2%). This equation
system is analogous to the equation system over F for the AES.

4, Grobner Basis Equation System

We now show how to obtain a different system of polynomial equations
over the Rijndael field F. We follow the approach of [14] and consider
the non-linear operation in the S-box as © — 22%¢ rather than inversion
in the Rijndacl ficld F. Such systems contain equations that are denser
and have higher degree than those described in Section 5.3, and have
also been considered in [116]. However, the cquation system of [14] does
show somc intercsting algebraic properties of the AES encryption.

We let w; = (wip, ..., wi15) € F16 denote the round input (0 < i < 9)
and k; = (kio,..., ki 15) the round key (0 < ¢ < 10). Furthermore, we
let S(w;) = (g(wio),...,g(wi15)) denote the output of the SubBytes
opcration, where the polynomial ¢(z) is the interpolating polynomial for
the S-box and is given by

05z254+09z253+F9z251+25z247+F4z239+01z223+B5z191+8F2127+63.

If p and c denote the plaintext and ciphertext respectively, then an AES
encryption is given by

wo = pilky
wi; = CR (S(wi-1))+k [=1,...,9]
c R (S(wg)) + ko,

where R and C arc the 16x16 matrices over F corresponding to the
ShiftRows and MixColumns operations (Section 4.1).
We can now rearrange the system to obtain

0 = wo+ko+p
0 = S(wi1)+(CR) "(wi+k) i=1,...,9
0 = S(wg)+E  (kip+c).

This gives an equation system with 176 cquations, of which 16 cquations
are lincar and the other 160 equations cach have total degree 254.

We can perform a similar rearrangement with the key schedule equa-
tions using the inverse S-box, though its interpolating polynomial is
dense. The coeflicients of this polynomial h(z) arc given in Figure 5.3,
where

h(z) = 0527 + CFz* + .. + F3z + 52.
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05 CF B3 16 55 CO 7A 01 22 D8 6B A6 1F 0D BC
49 85 B4 1B 5E BD 18 1D 6D C5 23 09 43 68 80
6C CC 42 9F OF D2 3B 2C 5F BE AE E4 93 8B CB
65 CO 1E 8E 32 1D A5 76 A9 2C 13 05 60 FD 1B
AB 64 C1 A8 7F 55 DB EC 20 C4 DB 7E 92 80 A3
59 91 91 81 4E 11 DD 4E D3 E3 19 E7 03 24 45
DA EA 87 2D 23 82 38 B7 9E B3 2A 3E 1C EC C3
45 ED D5 2A 8D ED 37 26 EO BC 58 E2 6C 24 55
C7 AA 09 4F 82 CA 10 EE 1A 2E 40 27 81 92 Bl
02 8B 87 7F BO 6F 53 08 CB 03 BO DF 1F A7 A2
FE 8E A8 E1 71 FF bb bA 1D 9D BF E8 BA 6B 72
E3 04 D9 38 D3 B9 16 52 18 19 3E 9E 03 56 A6
71 03 E4 86 F5 BO 05 D1 10 E2 E5 CB Bl F2 8E
C7 OC A7 BF 46 0B 01 C5 A3 50 77 EA 05 65 8E
89 D4 6D D3 75 65 13 2F 86 AF 7C 7B 85 C8 E8
04 7B CF 2F 8A 9A 3D CF 21 39 D9 29 73 F6 23
40 1B B2 CO 6D 85 1C 8A 2C BB 90 1E 7E F3 52

Figure 5.3. Coeflicients of the interpolating polynomial for the inverse S-box.

Thus we obtain (1 < i < 10)

0 h(kio + k—1)0 + 01 ki—1,15
0 h(k‘,’,l + k(iﬁl)yl) ki—1,12
0 hkia + k(i-1)2) ki-113
0| = hikig + kgi-1),3) | kiciad
0 ki,4 + k(ifl),él ki}()
0 kixs + k@-1),15 ki1

We have thus constructed an equation system over F for an AES
encryption in 336 variables. This equation system comprises 176 poly-
nomial equations arising from the encryption operation and 160 from
the key schedule. Of these 336 equations, 200 equations each have total
degree 254, while the remaining 136 equations are linear.

We can also consider this system as a set of polynomials in the mul-
tivariate polynomial ring

Flwoo, ..., w015, k0,0, - - - k10,15, W10, - - ., Wo,15]
with 336 variables over F. We consider this ring under the glex monomial
ordering (Scction 2.2), where the variables are ordered as

wo,n < ... = wo,15 ~ k0,0 < ... k10,15 = w1,0 =< ... = w9, 15.

Under this ordering, the 160 polynomials of degree 254 derived from

the encryption operation have wz‘;’-‘* as their leading monomial. The
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remaining 16 linear equations are those containing the plaintext and have
ko,; as their leading monomial. In the key schedule, the lincar cquations
have k; ; as their leading monomial (1 <4 < 10 and 4 < § < 15), whilst
the nonlinear cquations have kz‘;"l as their lcading monomial (1 < ¢ <
10 and 0 < j < 3). Thus the leading monomials of all polynomials
are pairwise coprime, and Theorem 5.1 now follows immediately from
Theorem 2.80.

THEOREM 5.1 The set of polynomials over GF(2®) derived from the
AES cncryption as above is a Grobner basis with respect to the glex
monomial ordering.

Some consequences of Theorem 5.1 are explored in Scction 6.3.



Chapter 6

ANALYSIS OF AES EQUATION SYSTEMS

After Rijndacl was adopted as the AES, the possibility of algebraic
attacks led to much speculation [75, 110, 112]. This might be seen as part
of a growing interest in the wider application of computational algebra
to cryptography. Systems of multivariate polynomial equations have
been proposed in asymmetric cryptology [100] and the analysis of some
cryptosystems, most notably certain stream ciphers [29], demonstrate
the importance of computational algebra techniques.

Solving systems of multivariate polynomial equations is a classical
problem in algebraic gecometry and computer algebra [33, 34]. Sup-

posc we have a field F and a multivariate polynomial ring Flzy, ..., xy)
in n variables over F. Given a set of m polynomials f1, ..., fin in
Flzy,...,z,], we might wish to find solutions to the equation system
fi =0 (1 <1< m),that is to find (ay,...,a,) € F™ such that

filar, ... a,) = ... = fi(ar,. .. an) = 0.

This problem is cquivalent to finding the affine varicty associated with
the ideal I == (f1,..., fin) <Flzq,...,z,] gencrated by the polynomials
f1...., fm (Section 2.5). This afline variety V(I) is defined by

V() = {(al,ag,...,an) eF* | flag,an,...,a,) =0 for allfel}.

A common technique to obtain the set of solutions of a polynomial
system is to compute the reduced Grobner basis of the ideal I, particu-
larly with respect to the lex monomial ordering (Scction 2.2). By finding
such a Grobner basis of I, we can obtain all solutions to an equation sys-
tem in the algebraic closure of F. However, there are situations where
the solutions of a polynomial system can be found without calculating
the reduced Grobner basis of 1.
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The problem of solving systems of multivariate equations over a finite
field is known to be NP-hard [54]. However we do not expect the prob-
lem to be so hard on average. Furthermore, in the cases of interest in
cryptology, the systems often have some special properties. For exam-
ple, the field F is often a finite field of characteristic 2 and the solutions
sought usually lic in F. A common technique in this casc is to add the
finite field relations z! — z; (1 < i < n) to the existing sct of equations,
where ¢ is the order of F. This gives a set of m+n cquations and ensures
that all found solutions lie in F.

Equation systems that occur in symmetric cryptology often contain
many more cquations than variables. We call this type of equation sys-
tem an overdefined or overdetermined system. Overdcefined systems arc
often easier to solve. In fact, the very existence of an overdefined mul-
tivariate quadratic cquation system for the AES was the basis for much
of the early research into algebraic attacks against the cipher [31, 32].

Various methods have been suggested for the analysis of such equation
systems, and there is much literature on the subject [33, 34, 66, 72]. We
discuss some proposed methods of solution for such equation systems.
We give an overview of some of the classical methods, such as Buch-
berger’s algorithm for computing a Grobner basis, as well as methods
that have been specifically proposed in the context of cryptology, such
as the XL method. We also discuss the applicability of other methods
designed to cxploit the structure of the AES equations.

1. Grobner Basis Methods

Grobner basis algorithms are well-known general purpose methods for
solving systems of multivariate polynomial equations. Most computer
algebra packages, such as the MAGMA, SINGULAR and MAPLE packages,
include implementations of Grobner basis algorithms. This is often the
default technique for computing the solution of a system of polynomial
equations. The classical gencral algorithm for computing a Grobner
basis of a polynomial ideal is Buchberger’s algorithm [13].

Buchberger’s algorithm

We consider the polynomial ring Flzy, ..., z,] with a monomial ordering.
Suppose I < Flzy,...,z,] is an ideal of this polynomial ring with a
basis F = {f1,..., fm}. We can define the S-polynomial of any pair of
polynomials (f;, f;) of F' by

S(fin ;) = <lcm(LM(fi),LM(fj))) fie (ICHI(LM(fi)aLNI(fj))> 5

LT(f;) LT(f;)
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Input: F = {fi,..., fm}
Output: Grébner Basis G = {g1,..., g} for the ideal generated by F

G:=F
repeat
G =G
for each pair of distinct polynomials p and ¢ in G’ do
Construct the S-polynomial S(p, ¢)
Compute the remainder r of division of S(p, ¢) by the polynomials in G’
if » # 0 then
G:=Gu{r}
end if
end for
cuntil G =G

P DLy

e el ol
A el vl

: return G

—
<y

Figure 6.1. Buchberger’s algorithm for computing a Grébner basis.

with lem being the least common multiple. The S-polynomial S(f;, f;) is
a polynomial in the ideal I which is computed essentially by cancelling
the lcading terms of the two polynomials f; and f;. Buchberger’s algo-
rithm uses S-polynomials and Theorem 6.1 to compute a Grébner basis
of the ideal 1.

THEOREM 6.1 Let Flzy,...,2,] be a polynomial ring with a monomial
ordering and let I be an ideal of Flzy,...,2,]. A basis G = {f1, ..., fm}
for the ideal I is a Grobner basis for [ if and only if every S-polynomial
S(fi, fj) of pairs of distinct polynomials f;, f; € G has remainder 0 upon
division (reduction) by G.

Buchberger’s algorithm [33] is given in Figure 6.1. The algorithm
can be modified to perform the autoreduction of the set G as the last
step of the algorithm. This modified algorithm computes the unique
reduced Grobner basis of the ideal I = (fi,..., fm). Such a reduced
Grobner basis, especially with respect to the lez ordering, can be used
to computce solutions of the equation system

fl(ilil,...,.’ljn) ZO, ,fm(5121,...,$n) = 0.

EXAMPLE 6.2 We consider the polynomial ring C[z,y| of polynomials
in two variables over the complex numbers with the lex ordering (with
y < z). Let I < Clz, y] be the ideal generated by the two polynomials

fi =a*y—1and fo =axy* — 2.
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We compute the Grébner basis of this ideal I by using Buchberger’s
algorithm. We initially set G = {f1, f2} and compute the S-polynomial
of the two polynomials in G, so

S(f1,f2) = %—(zyﬂ) %;’r(xy - 1)
yla*y — 1) — z(ey® —z) = 2% —y.

We note that the leading term of S(f1, f2) is 22, whilst LT(f;) = 2y and
LT(f2) = xy? Thus S(f1, f2) is a polynomial that cannot be reduced by
either polynomial in G = {fi, fo}. We thus sct f3 = S(f1, f2) = 22—y
and include f3 in G to obtain G = {f1, fa, f3}.

We now compute the S-polynomial of f; and f3 to obtain

S(f1, f3)

‘LQ
1)

(z

Sh(aly — 1) — LR (e —y)
y—1)—yle® —y) =y* - L

We note that S(f1, f3) cannot be reduced by the set G = {f1, fa, f3}.
We thus set fi = S(f1,f3) = y?> — 1 and include f; in G to obtain
G = {f1, f2, f3, fa}.

Wc noxt compute S(fz, f3) = —z? —|—y We note that its leading term
is —x2, which is divisible by LT(f3) = z2. We can thus divide S(fa, f3)
by fs and then by f4 to obtain

I

4

S(fo, fa) =—2*+y° =~fa+ (4 —y) = —fs + yfa.
Similarly, we have S(f1, f4) = fs, S(f2, f4) == 0 and S(fs, f4) = fs —yfa.

Thus the S-polynomials of all pairs of polynomials in G are reduced to
0 by G, and so G = {f1, fa2, f3, f4} is a Grobner basis of 1.

We can now rcduce the set G to obtain the reduced Grobner basis
{2? —y,y% — 1} of I. 1t follows that the cquation system

22 —y=0andy?—1=0
has the samec solution set as the equation system
#?y—1=0and zy°> — 2z =0.

Thus we have the complete solution set {(1, 1), (—1,1), (i, —1), (=i, 1)}
in the complex numbers for the system a2y — 1 = 232 — 2 = 0. u]

Buchberger’s algorithm can be thought of as a generalisation of the
Euclidcan algorithm for calculating the greatest common divisor of a
set of univariate polynomials. The univariatc polynomial ring Flz] is a
principal ideal domain. Thus the ideal {fi,..., fm) is generated by the
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polynomial g = ged(f1, ..., fi) and g is just the reduced Grobner basis
of {fi1,..., fm). This basis is calculated by Buchberger’s algorithm.

Buchberger’s algorithm can also be thought of as a generalisation
of Gaussian reduction to nonlinear polynomials. The reduced Grébner
basis of an idecal generated by a set of linear polynomials is a set of
linear polynomials in cchelon form. The equivalent echelon sct of linecar
polynomials is thus calculated by Buchberger’s algorithm.

As presented in Figure 6.1, Buchberger’s algorithm can be used di-
rectly to compute the Grobner basis of a polynomial idcal. However, it
is not particularly efficient as many of the S-polynomials gencrated in
the first step of the algorithm reduce to zero. Thus many unnecessary
reductions arc performed, and reductions arc by far the most compu-
tationally intensive part of the algorithm. A good way to improve the
cfficiency of the algorithm is to identify those pairs of polynomials whose
S-polynomials are known (before calculation) to reduce to zero. Such
pairs of polynomials can be identified using Buchberger’s criteria. For
example, Buchberger’s first criterion is a consequence of Theorem 6.3.

THEOREM 6.3 If fi, f2 € Flzy,...,zs] are two polynomials with co-
prime leading monomials, then the S-polynomial S(fi, f2) reduces to
zero with respect to {fi, fo}. Thus Buchberger’s algorithm does not
need to consider S(f1, f2).

We note that Theorem 2.80 follows immediately from Theorem 6.3. Such
criteria can be used to modify and improve the cofficicncy of Buchberger’s
algorithm [33].

Complexity of Buchberger’s algorithm

Even when Buchberger’s criteria are incorporated, the algorithm still
performs many unnecessary S-polynomial reductions. Further issues,
such as the order in which S-polynomials are processed or the choice of
monomial ordering, also have a strong influcnce on the cfficiency of the
algorithm. For example, the grevler ordering is often the most efficient
monomial ordering.

The complexity of Buchberger’s algorithm is closely related to the
total degree of the intermediate polynomials generated by the algorithm.
There are examples where the computation of a Grébner basis of an ideal
generated by polynomials of degree at most d involves polynomials of
degree proportional to 22 [33]. In fact, Buchberger’s algorithm can have
double exponential complexity. There arc also examples for which the
computation of a Grobner basis using Buchberger’s algorithm requires
an cnormous amount of time and memory. However, these examples
tend to be somewhat artificial and, in general, the running time and



92 ALGEBRAIC ASPECTS OF THE AES

storage requirements of Buchberger’s algorithm seem to be much more
manageable for generic cases [5, 79].

The required solutions for AES equation systems lic in the ground
field. Thus we usually include field equations of the form zf +2; = 0 when
considering the AES equation system over GF(2) (Section 5.2). For the
cquation system for the AES over GF(2%) given by the BES, we would
include the conjugacy equations of the form zf + zi+1 = 0 (Section 5.3).
For such systems, the degree of the intermediate polynomials generated
by Buchberger’s algorithm is at most the total number of variables in
the cquation system. Thus the complexity of Buchberger’s algorithm
in relation to an AES equation system is at worst single exponential.
However, it is very unlikely that Buchberger’s algorithm without further
optimizations could be uscd to find the solution of the type of equation
systems arising from established block ciphers.

F4 and F5 algorithms

The F4 and F5 algorithms have been proposed as alternative approaches
for computing Grdbner bases [46, 47]. The F4 algorithm can be consid-
cred an enhanced version of Buchberger’s algorithm. Since the main
computational cost of Buchberger’s algorithm lics in polynomial reduc-
tions, which take place sequentially, the F4 algorithm essentially replaces
many sequential polynomial reductions with a matrix reduction. This
can potentially give a faster algorithm than Buchberger’s algorithm. The
F5 algorithm works in similar manner, using ideas introduced in [72].
The F5 algorithm also includes an optimal criterion that cnsures that,
under some conditions, all the matrices generated arc full-rank.

The ideca of combining Grébner basis computation with Gaussian elim-
ination was first discussed in [72]. The F4 and F5 algorithms are based
on this idca and work by performing the multivariate division algorithm
as a matrix reduction. We illustrate this idea in Example 6.4 [115].

EXAMPLE 6.4 We consider the polynomial ring Rz, y, 2] of polynomials
in three variables over the real numbers with the ez ordering. Suppose
we wish to reduce the following polynomials

fi = 3x3yz — bay and fy = 5x22? + 3y + 1
by the (ordered) set of polynomials {g1, g2}, where
g1 =1xy — 2z and g = 2z — 3yz.

This is a typical operation that is rcquired by Buchberger’s algorithm.
We would first reduce fi with respect to {g1,¢92}. The reduction steps
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required can be seen from the series of cqualities

fi = 3az3yz—5zy

62222 — bzy  +(32%2)g1

= —Szy+18yz? +(3222)g1 + (62)g2

= 18yz? — 10z  +(322%2)g1 + (62)g2 — (5)g1.

I

Thus f1 reduces to 18yz? — 10z with respect to {g1, g2}, We would then
reduce fo with respect to {g1, g2} by the steps indicated by

fo = 52222 +3ay+1
= 3zy+15y22 +1 +(52)g2
15yz2 +62+1  +(52)g2 + (3)g1.

Thus f» reduces to 15y22 -+ 6z -+ 1 with respect to {g1, g2}
Buchberger’s algorithm would perform these two reductions sequen-
tially. However, the individual reduction steps for both fi and f2 only
require reduction with respect to (222)gy, g1 and (2)g2. The idea behind
the F4 and F5 algorithms is to carry out these reduction operations as
a matrix reduction. Thus we would construct the matrix of coefficients

a:syz %222 y22 zy =z 1

f1 3 0 0O -5 0 O

f2 0 5 0 -3 0 1
z°z g1 1 -2 0 0 0 0
1g 0 0 0 1 -2 0

zZ ga 0 1 -3 0 0 O

The polynomials f; and fo give the first two rows. The polynomials
(z?2)g1, g1 or (2)ga, which are required to perform the reduction, give
the remaining threc rows. The reduction steps correspond to the row
reduction of the upper two rows using the lower three rows. Such a row
reduction would give the following matrix

a:3yz z222 yz2 Ty b4 1

f1 0 0 18 0 -10 0

fo 0 0 15 0 6 1
?zg| 1 -2 0 0 0 0
1lg 0 0 0 1 -2 0

Z g2 0 1 -3 0 0 0

The first two rows of this row-reduced matrix give the reduction of fi
and fo with respect to {g1,g2}, thereby giving the same result as the
sequential reduction of Buchberger given above. N
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Complexity of F4 and F5

The F4 and F5 algorithms incrementally construct matrices similar to
that given in Example 6.4. These matrices are used to compute the
reduction of many polynomials simultaneously by computing the equiv-
alent row-reduced matrix. This means that the F4 and F5 algorithms
are potentially faster than Buchberger’s algorithm. The F5 algorithm
has the further advantage that usually only full-rank matrices are gen-
erated. This avoids further unnecessary reductions. Furthermore, the
matrix opcrations used by the F4 and F5 algorithms can often be speeded
up using specialised techniques, such as sparsc matrix methods. Sim-
ilarly to Buchberger’s algorithm, the F4 and F5 algorithms require an
cfficient selection criterion in order to decide how many and which poly-
nomials are uscd to construct the matrices. The efficiency of the F4 and
F5 algorithms is highly dependent on this sclection criterion.

The F4 and F5 algorithms arc currently the fastest known gencral
algorithms for computing Grobner bases. However, it is not easy to im-
plement these algorithms in a way that is efficient for all inputs. Further-
more, the F4 and F5 algorithms often require more memory than Buch-
berger’s algorithm. The F4 algorithm is currently the default Gréobner
basis algorithm in the computer algebra package MAGMA [77]. Both the
F4 and F5 algorithms have been successfully used to solve a well-known
cryptographic challenge [49, 115].

As with Buchberger’s algorithm, it is not an easy task to estimate
the complexity of the F4 algorithm for generic cases. However, the b
algorithm can be shown to have complexity of the order of N ficld oper-
ations, where Np is the size of the largest matrix containing polynomials
up to degree D that is constructed by the algorithm and w (2 < w < 3)
is the exponent of matrix reduction (Definition 2.53). In general, the
degree D of the generated polynomials is a critical parameter in the
efficiency of both algorithms.

The complexity of Grobner basis computations using the F5 algorithm
is considered in [6], where upper bounds for the size of matrices gener-
ated and for the algorithm complexity for gencric systems of quadratic
cquations over GF(2) with m equations and n variables arc given. For
large quadratic systems with the same numbecer of equations and vari-
ables (n = m), the maximum degree D is expected to be about 0.09n
(asymptotically). This implies that the sizes of the matrices generated
arc exponential in the number of variables, and so the complexity of the
F5 algorithm should also be exponential. Figure 6.2 gives some more
general results [6].

The estimates of [6] are for generic systems, that is systems with no
particular structurc. By contrast, the equation systems arising in cryp-
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Condition [ Complexity of the F5 algorithm |
m grows linearly with n Exponential in n
n << m << n? Subexponential in n
m grows linearly with n? Polynomial in n

Figure 6.2. The asymptotic complexity of the F5 algorithm for generic quadratic
systems with m equations in n variables over GF(2).

tology arc typically very structured. Such structure often means that
the matrices gencrated by the F4 and F5 algorithms are much smaller
than for generic cases. This was the case for the system of quadratic
equations over GF(2) with 80 equations and variables arising from the
(80-bit) HFE asymmetric cryptosystem [100]. The estimates of [6] for
the gencric case predict that the maximum degree D of polynomials re-
quired to solve the HFE equation system would be 12. However, the
maximum degree obtained in reality is 4. This implies that an HFE
equation system is far casier to solve than a comparable generic system,
allowing the HFE Challenge I to be broken [49].

The complexity of solving block cipher equation systems using the F5
algorithm is also considered in [6]. For a generic equation system com-
parable to the AES system, the maximum degree of the polynomials
gencrated by the F4 and F5 algorithms is expected to be 69. Thus the
matrix that would be generated by the F5 algorithm would have size
about 2341, This means that the complexity of the F5 algorithm in solv-
ing this generic system would be of the order of 2341% field operations,
where w is the exponent of matrix reduction (Definition 2.53). The so-
lution of a generic system of this size would clearly be intractable using
these Grobner basis algorithms. However, these estimates are for generic
equation systems whercas the AES cquation systems arc highly struc-
tured. State and key variables generally only occur in cquations with
the state and key variables from neighbouring rounds. Such equation
systems are clearly different from comparable generic equation systems,
and Groébner basis algorithms may exploit such structure and reduce the
complexity of the computations.

Grobner basis conversion

A Grobner basis is computed with respect to a specific monomial or-
dering. It is often the case that a polynomial ideal has different (reduced)
Grébner bases for different monomial orderings. However, there are cer-
tain orderings that arc particularly uscful for obtaining the solution of a
system of polynomial equations associated with an ideal. Such monomial
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orderings are called elimination orderings, and the lex ordering is the
most well-known example of an elimination ordering. The usefulness of
the lex ordering for solving systems of polynomial equations is given by
the following classical result from Elimination Theory [33].

THEOREM 6.5 Let I <F[xy,...,z,] be a polynomial ideal and G be a
Groébuer basis of I with respect to the lez ordering with z,, < ... < z1.
Then for cvery 0 < k < n, the set

Gr = GNFlzg1, -5 Zn)
is a Grobuer basis of the ideal Iy = I NFlzgyr, ..., To).

Theorem 6.5 states that wc can usc a Grébner basis with respect to
the lex ordering to essentially eliminate variables from the polynomial
cquation system. In particular, if the set of univariate polynomials in x,,
in the ideal I is non-empty, then this set is a principal idcal. The single
element of the Grobner basis G,,—1 = G NFlzy,] is the generator of this
principal ideal. The associated univariate cquation corrcsponding to this
generator can be solved for z,,. This process can be repeated sequentially
so that we obtain solutions of the equation systcm onc variable at a time.

A Grobner basis of an ideal I with respect to an climination ordering
is therefore a particularly useful tool for solving a multivariate equation
system. However, there are other monomial orderings that might lead
to more efficient computations. While a Grébner basis of the idecal I
with respect to such a monomial ordering might not immediately give
solutions to the equation system, one possible approach is to obtain a
Grobner basis with respect to an efficient ordering and to convert this
into another Grébner basis with respect to an elimination ordering.

There arc algorithms that convert a Grobner basis of I <F[xq, ..., 2y
with respect to one monomial ordering into a Grébner basis of I with
respect to another monomial ordering. If the ideal I is such that the
quotient ring R = Flzy,...,2,]/I has finite dimension as a vector space
over F, we say that I is a zero-dimensional ideal. In this case, the FGLM
algorithm can be used to perform the conversion between two Grébner
bases of I with respect to different monomial orderings [48]. The FGLM
algorithm uses techniques from lincar algebra in the vector space R, and
its complexity is given by Theorem 6.6 [14, 48].

THEOREM 6.6 Let I < Flzy,...,x,] be a zero-dimensional polynomial
ideal such that the quotient ring F{zq,...,zy]/I has finitc dimension d
as a vector space over F. The FGLM algorithm can convert a Grobner
basis of I with respect to onc monomial ordering into a Grobner basis
of I with respect to another monomial ordering with complexity of the
order of nd? field opcrations.
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The FGLM algorithm is often used in conjunction with Grébner Basis
algorithms to compute the solution of a system of polynomial equations
associated to a zero-dimensional polynomial ideal. We first compute
a Grobner basis of the associated ideal I with respect to an efficient
ordering, such as greviex. We then use the FGLM algorithm to convert
this Grébner basis to a Grobner basis for I with respeet to an climination
ordering, such as lez. This new Grébner basis for the associated idcal [
then allows us to compute the solutions to the equation systcm.

We note that when I is not a zero-dimensional ideal, there are other
methods for conversion of Grébner bascs, such as the Grobner Walk [34].
However, the complexity of the Grobner Walk depends on the particular
orderings used, and little is known in general about the time and space
requirements for the algorithm.

A Grobner basis for the AES

In Section 5.4, we show how to represent an AES cneryption by a particu-
lar set of polynomials over the Rijndael field F. Thesc formed a Grobner
basis G with respect to a very specific monomial ordering (Theorem 5.1).
However, this particular monomial ordering is not uscful for directly ob-
taining the solutions of the AES cquation system. A possible approach
is to convert this Grobner basis G to another Grobmer basis GY with
respect to the lez ordering.

Let Flz;j, krs] be the polynomial ring in the encryption and key vari-
ables and I = (G) be the ideal gencrated by the Grébner basis G de-
fined in Section 5.4. It follows from Theorem 5.1 that the quotient
ring R = F[zij, kys]/I has dimension 254209 =~ 21998 0 I is a zero-
dimensional ideal, and the FGLM algorithm could, in principle, be used
to convert between Grobner bascs for I. However, Theorem 6.6 indi-
cates that converting this Grobner basis G into a Grobner basis G with
respect to the lex ordering would be infeasible using the FGLM algo-
rithm, as the dimension of R = Fz;j, kys]/I is far too large. Whether
this conversion can be performed with lower complexity than the FGLM
algorithm suggests, or whether it is feasible to obtain the required uni-
variate polynomials in the key variables, are interesting research areas.

A further approach for using the Grébner basis for the AES system
would be to try to recover a key byte simply by testing whether cer-
tain solution polynomials arc in the idcal generated by the AES equa-
tions [14]. A Grébner basis provides a powerful tool to solve the idcal
membership problem, as a polynomial p belongs to the idecal I if and
only if p reduces to zero with respect to any Grébner basis of I.

For the AES, the néive approach would be to verify whether the poly-
nomial kg ; +a; bclongs to the ideal I generated by the AES polynomial
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Number of | Number of | Number of | Time in

variables equations | monomials | seconds
SR(2,1,1,4) 36 104 137 0.03
SR(3,1,1,4) 52 152 201 0.11
SR(4,1,1,4) 68 200 265 0.28
SR(5,1,1,4) 84 248 339 0.97
SR(6,1,1,4) 100 296 393 4.30
SR(7,1,1,4) 116 344 457 11.26
SR(8,1,1,4) 132 392 521 16.56
SR(9,1,1,4) 148 440 585 46.05
SR(10,1,1,4) 164 488 649 74.06
SR(2,1,1,8) 72 172 365 118.45
SR(3,1,1,8) 104 252 541 N/A

Figure 6.3. The computation time of the I'4 algorithm for the system of equations
generated by SR(r,1,1,e) over GF(2).

equations. In this casc, the key byte is given by kg ; = a;. However, the
Grébner basis G of Section 5.4 gives solutions over the algebraic closure
of F. Thus, even if we know that the system has unique solution in F
given by ko; = aj, all we can guarantce is that a polynomial of the form

q- (ko + a;)*

belongs to the ideal I associated with the AES cquation system, where
q € Flko;]. The degree of this polynomial, as well as the exponent ¢,
are related to the dimension of the quotient ring R. Therefore it seems
unlikely that this approach can give an efficient method for solution of
the AES equation system.

It is quite surprising that a Grobner basis for the AES equation system
can be obtained in such a straightforward manner [14]. Although obvious
natural approaches do not scem to provide a direct solution to the key
recovery problem, it is an interesting question whether the existence of
such a Grébner basis for the AES cquation system can be exploited.

Experimental results

We now discuss some experimental results concerning Grébner basis
methods for solving the equation systems arising from small scale vari-
ants of the AES (Section 3.3). These results were originally presented
in [22]. The expcriments were performed using the computer algebra
package MAGMA [77] which includes an cfficient implementation of the
F4 algorithm. The Grébner bascs were computed with respect to the
grevlex monomial ordering, and the experiments were performed on a
HP workstation running Windows XP with a Pentium 4 - 3GHz pro-



Analysis of AES Equation Systems 99

Number of | Number of | Number of | Time in

variables equations | monomials | seconds
SR(2,1,1,4) 36 72 89 0.11
SR(3,1,1,4) 52 104 129 0.75
SR(4,1,1,4) 68 136 169 2.02
SR(5,1,1,4) 84 168 209 7.47
SR(6,1,1,4) 100 200 249 23.71
SR(7,1,1,4) 116 232 289 56.74
SR(8,1,1,4) 132 264 329 43.70
SR(9,1,1,4) 148 296 369 219.38
SR(10,1,1,4) 164 328 409 340.31
SR(2,1,1,8) 72 144 177 43.55
SR(3,1,1,8) 104 208 257 N/A

Figure 6.4. The computation time of the F4 algorithm for the system of equations
generated by SR(r, 1,1, e) over GF(2°).

cessor and 1 GB of RAM. Even though these simple cxpcriments usc
off-the-shelf software with limited computing resources, they arc helpful
as a preliminary asscssment of algebraic attacks against the AES. Whilc
small scale variants might not exhibit all the features of the AES, they
might provide an understanding of how various components and repre-
sentations of the AES contribute to the complexity of algebraic attacks.

We first discuss the experimental results of [22] for the small scale
variants SR(r,1,1,4) and SR(r,1,1,8). These small scale variants are
defined in Section 3.3. Each variant gives rise to an equation system
over GF(2) (Scction 5.2) and a BES-style equation system over GF(2%)
or GF(2%) (Section 5.3). Figure 6.3 shows the experimental results for
equation systems over GF(2). The experimental results for the BES-
style cquation systems over GF(2%) or GF(2%) arc given in Figurc 6.4.
In both Figures 6.3 and 6.4, N/A indicates that a timing is not available
due to there being insufficient memory available to complete the com-
putation. It was observed that the time to solution depended greatly on
the ordering of the variables [22].

The block cipher SR(r, 1,1, €) is particularly simplc and based on a
1x1 array. We would expect to easily solve the equation system of
such a block cipher with many rounds. However there was insufficient
memory to solve the equation system of SR(3,1,1,8), even though it
is of comparable size to that of the casily solved equation system of
SR(6,1,1,4). This suggests that the field relations, which are used in
a different way in the BES-style equations over GF(2¢), may play an
important role in the computations for solving the system.
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Fy Buchberger

Number of | Number of | Number of time in time in

variables equations | monomials seconds seconds
SR(1,2,1,4) 40 80 97 0.22 1.11
SR(2 2,1,4) 72 144 177 24.55 40.58
SR(3,2,1,4) 104 208 267 519.92 2649.90
SR(4,2,1,4) 136 272 337 N/A 28999.41
SR(1,2,2,4) 72 144 169 27.73 444.07
SR(2,2,2,4) 128 256 305 N/A N/A

Figure 6.5. The computation time when using an F4 and Buchberger Grébner basis
computation for the system of equations generated by SR(r,-, -, 4) over GF(24).

A comparison of the results in Figures 6.3 and 6.4 shows that timings
for the cquation systems of SR(r,1,1,4) over GF(2) are much better
than those for the same block cipher over GF(2%). However the system
for SR(2,1,1,8) shows the opposite bchaviour. Thus it is not clear
whether bit-level equations gencrally offer a better representation than
BES-style equations, particularly since MAGMA’s implemcntation of the
F4 algorithm appears to be heavily optimised for operations over GF(2).
Given the highly structured and sparsc naturc of the BES-style equation
systems over GF(2¢), we would expect a Grobner basis algorithm that
has been optimised for GF(2¢) to give the best algebraic attack against
these AES variants.

We now discuss experiments on the small scale variants SR(r,2,1,4)
and SR(r,2,2,4), which are block ciphers based on a 2x1 and a 2x2
array respectively [22]. Experiments to solve the equation systems of
these block ciphers using the MAGMA implementations of Buchberger’s
algorithm and the F4 algorithm arc presented in Figure 6.5, with N/A
again indicating insufficient memory. Whilst we would expect Buch-
berger’s algorithm to be slower, it should also require less memory than
the F4 algorithm. We note that the equation system for SR(4,2,1,4) is
comparable to the equation system for SR(2, 2,2,4). However, only the
latter proved to be intractable. This illustrates the important role played
by the inter-word diffusion in the complexity of the computations. The
diffusion of SR(r,2,1,4) is limited, whereas SR(r,2,2,4) has a similar
diffusion pattern to the AES.

The block ciphers in [22] have very small key spaces and can easily be
broken by exhaustive key scarch. However, the results in [22] are solely
concerned with algebraic analysis. As such, they provide a preliminary
insight into the behaviour of algebraic attacks against AES-like block
ciphers, though they scem to indicate that gencral purpose Grébner
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basis methods arc unlikely to solve a full cquation system arising from
the AES.

Some other experiments on equation systems with a similar structure
to AES equation systems, that is with layers of linear and non-linear
cquations repeated for many rounds, arc presented in [3]. These results
on very small systems seem to indicate that the maximum degree of
polynomials obtained during the running of the F§ algorithm is bounded
by a reasonably small value for any number of rounds. This would
suggest that thc complexity of solving such a system is not what we
would expect from a comparable gencric system. However the connection
between the equation systems in [3] and the AES cquation system is
not sufficiently strong to conclude that an AES equation system would
behave in a similar mannecr.

2. Linearisation Methods

Linearisation is a well-known technique for solving certain large sys-
tems of multivariate polynomial equations. Suppose we have a system
of polynomial equations

fl(il‘l,...,él?n):(), af’m(xlw"axn):o

over a field F, and let {f1,..., fm} be the associated sct of polynomials
in the polynomial ring Flzi,...,z,]. Each polynomial is a finitc lincar

combination of monomials 2252 ... 2% = X* over F, so we have

fi = Z C?)(Xa,

aEN'

where ¢!, € F and N’ is a finite subsct of the set of multi-indices N™
(Definition 2.29). We linearise this system by considering the monomials
X% as new independent variables X, to obtain a new lincar system in
the variables X,. Thus to solve the system by linearisation, we can
construct the matrix Ay of this resulting linear system, where Ay is
given by

Xo . Xy
fi [k .o,
3
fm\cw ... cn

and then reduce the matrix Ay, to echelon form. Any solution of the
original polynomial system gives a solution of this resulting lincar sys-
tem, so the solutions of this lincar system can be checked for consistency
to obtain solutions for the original polynomial equation system.



102 ALGEBRAIC ASPECTS OF THE AES

The polynomial ring Flz1,...,2,] is a vector space over F, so this
method ecssentially computes a basis of the vector subspace generated
by the polynomials fi,..., fi,. It is clear that the linearisation method
can only be effective if the number of linearly independent polynomials
in the system is approximatcly the same as the number of monomials.
For genceric systems of equations of degree d in n variables, there are
about ("ji'd) distinct monomials of degree at most d. For finite ficlds F,
we can also make use of the field relations. For example, for GF(2) we
can identify z? with z;, so therc are about N = Z?:o (%) ~ n? distinct
monomials of degree at most d, and the matrix Ay has m rows and
about N columns. For this system to be soluble directly by lincarisa-
tion, we generally require that m > N — 1. Thus a nccessary condition
for linearisation to be effective is that the polynomial system be highly
overdefined.

EXAMPLE 6.7 We consider the polynomial ring Qfz,y, z] of polynomi-
als in three variables over the rational numbers. Suppose we have the
equation system

ryz+rz+a+2yt+z—3 =
2eyz — 4y +axz+yz—z+y
zy+zrz+yz+y—z2—2
ey +y+7

yr+zr+y+z2
ryz+ax+2z2-1

20yz —axy —3yz — 3y =

Il i
cCocoo0oO

Il

This system has scven equations and seven non-constant monomials, so
it is a candidate for solution by lincarisation. We construct the lincari-
sation matrix

TYz TY TZ Yz X y Z 1
1 0 1 0 1 2 1 -3
2 -4 1 1 -1 1 0 0
0 1 1 1 0 1 -1 2
0 2 0 0 0 1 0 7
0 0 0 2 1 1 1 0
1 0 0 0 1 0 2 —1
2 -1 0 -3 0 -3 0 0
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Applying row reduction to this matrix gives the matrix

zyz xy xz yz x Yy z 1
1 0 0 0 0 0 0 6
0 1 0 0 0 0 0 3
0 0 1 0 0 0 0 -6
0 0 o 1 0 0 0 2
0 0 0o 0 1 0 0 -3
0 0 o o0 01 0 1
0 0 0 0 0 0 1 -2
This gives us the solution x = 3, y = —1, 2 = 2, which is the solution of
the original polynomial equation system. O

If we assume that the matrix Ay, is a square matrix of size IV, then the
linearisation method has complexity of the order of N“ field operations,
wherc w is the exponent of matrix reduction (Definition 2.53).

The linearisation mecthod has been successfully used in the cryptanal-
ysis of some LFSR-based stream ciphers [29]. Howcever, it seems very
unlikely that linearisation can be used in a straightforward manner in
the analysis of block ciphers. While cquation systems for the AES are
overdefined, they are not sufficiently overdefined to allow us to solve
them by lincarisation.

The XL algorithm

The linearisation method fails when there are not enough linearly in-
dependent polynomials. Some methods have been proposed that extend
the original equation system. The intention is to gencrate enough lin-
carly independent equations, and then to apply the linearisation method
to this new extended polynomial equation system. We now discuss the
most prominent of these methods, the extended linearisation or XL al-
gorithm [28]. The XL algorithm was specifically proposed as an efficient
algorithm for algebraic attacks against ccrtain asymmetric cryptosys-
tems based on multivariate quadratic cquation systems.

Suppose that we have a system of polynomial equations

fl(x17x27"'7$7l) :0, 7fm(«’171:m2:~-~:$n) :O

over a field F of degree at most d, and let {fi,..., fin} be the associ-
ated sct of polynomials in the polynomial ring Flz1,...,2z,]. The XL
algorithm multiplies the polynomials in the original system by all mono-
mials X”? up to some prescribed degrec D — d. Thus the XL algorithm
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—_

: Input: Set F = {f1,..., fm} C Flz1,...,zxs] of polynomials of degree d.
2: OQutput: Set S C Flz1,...,z,] of univariate linear equations corresponding to
the solution of the system f; = 0.

3:

4. S =0

5 D:=d+1;

6: ¢:=1;

7: repeat

8:  Generate all products pesj; = X°f; for f; € F and monomials X? in the
variables i, ..., zn of degree at most D — d;

9:  Consider the system consisting of equations p(s,; = 0 and an order on the
monomials such that the monomials zF are the lowest. Perform Gaussian re-
duction on the corresponding matrix, that is solve the system by linearisation;

10:  if a univariate f(z;) is found then

11: Solve the univariate equation to get set of solutions A; in the algebraic
closure of the field F;

12: Take the (unique) a; € A; contained in the field F;

13: Make S := SU {z; — ai};

14: Make P(a,j) = P(a,j)(@:) € Flzit, ..., zn], that is substitute z; = a;

15: Make i := 1 + 1;

16:  else

17: Make D =D + 1;

18: end if

19: until i =n + 1;

20:

21: return S

Figure 6.6. The XL algorithm for an equation system with a unique solution.

constructs the matrix Axy given by

X0 ... Xu

f1 c(ll . c(ly,
X’B fl C({Y—ﬁ e cflllfﬂ
X5 fu \ Py o g

The XL algorithm attempts to usc lincarisation on the extended cqua-
tion system to find a univariate polynomial. This means that the XL
algorithm can find solutions even if the matrix A xr, does not quite have
full rank. As with linearisation, any solution of the original equation
system gives a solution of the extended lincar system, so solutions of
the extended system can be checked for consistency to give solutions for
the original system. The XL algorithm for an equation system with a
unique solution in I is given in Figurc 6.6.
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The XL algorithm is supposed to be especially suitable for overdefined
systems, and a number of variants of the XL algorithm have been pro-
posed to exploit special properties of such systems in different cases [26,
30, 32]. The XL algorithm can also be modified to usc the ficld rela-
tions z! — 2; of a finite field. In this casc, after every multiplication,
the resulting polynomials are reduced with respect to the field relations.
This algorithm is called reduced XL algorithm in [41] and potentially re-
duces the size of the matrix generated by the algorithm. However, these
versions of the XL algorithm have been shown to be part of the same
general theoretical framework [41).

EXAMPLE 6.8 We consider the equation system over GF(23) given by
2+ 32y +17=0and y? + Tzy +22 = 0.

The XL algorithm with D = 4 multiplies the two polynomials by the
monomials {z,y, 2%, 2y, y?} to give the following polynomials

Multiplier | z? + 3xy + 17 Y2+ Tay -+ 22
z x5+ 3zy + 17z Ty’ + Txty + 22z
y 2y + 3xy? + 17y 3+ Try? 4 22y
x? x4 4 323y + 1722 22y + T3y + 2222
zy a3y + 3222 + 1Tzy 2y’ 4+ T2%y? 4 222y
y? 22y? + 3293 + 1797 yt + eyt + 2242

We can now construct the corresponding matrix Axy,

2ty 2%yt oay® 2wy a2 oay oz oyt B oy oy 1
0 0 0 0 0 0 0 13 0 0 0 0 o0 17
0 0 0 0 1 3 0 o 0 17 0o 0 0 0 0
0 0 0 0 0 1 3 0o 0 0 0 0 0 17 0
1 3 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 3 0 0 0 0 o0 17 0 0 0 0 0 0
0 0 1 3 0 0 0 0 0 0 0 0 17 0 0
0 0 0 0 0 0 0 o 7 0 0 0 1 0 22
0 0 0 0 0 7 1 0 0 2 0 0 0 0 0
0 0 0 0 0 0 7 0o 0 0 0 1 0 22 O
0 7 1 0 0 0 0 22 0 0 0 0 0 0 0
0 0 7 1 0 0 0 0 2 0 0 0 0 0 o0
0 0 0 7 0 0 0 0o 0 0 1 0 22 0 0



106 ALGEBRAIC ASPECTS OF THE AES

This matrix can be reduced by row operations to give the matrix

4 3

N

2

W
w
[N
[S]
w

2t 2y 2%y oz 2 2%y w2 wy oz oyt vy oy 1
1 0 0 0 0 0 0 0 0 0 0o 0 15 0 O
0 1 0 0 0 0 0 6 0 0 0 0 4 0 2
0 0 1 0 0 0 0 0 0 0 0o 0 11 0 10
0 0 0 1 0 0 0 0o 0 0o 0 0 2 0 12
0 0 0 0 1 0 0 o o0 0 0 17 0 2 0
0 0 0 0 0 1 0 0 0 0 0o 16 0 1 0
0 0 0 0 0 0 1 o 0 0 0 10 0 13 0
0 0 0 0 0 0 0 1 0 0 0 0 16 0 1
0 0 ] 0 0 0 0 0 1 0 0 0 1 0 13
0 0 0 0 0 0 0 0 o 1 0 7 0 20 0
0 0 0 0 0 0 0 0o o0 o 1 0 8 0 8
0 0 0 0 0 0 0 o 0 0 o 0 O 0 O
The penultimate row gives the equation
y'+ 8yt 8= (y - 3)(y— 1)y~ 12)(y - 20) =0,
which gives {(4, 3), (8,11), (15,12), (19, 20)} as the solution sct. O

Termination of the XL algorithm .

Soon after it was proposed, doubts werce cast on whether the XL al-
gorithm would terminate for all inputs [81]. In fact, there arc many
inputs for which the XL algorithm fails to terminate. In order for the
XL algorithm to terminate, the reduction of the matrix Axy, has to yield
a univariate polynomial at every interaction of the algorithm. For the
XL algorithm with parameter D, the maximum possible degree for this
univariate polynomial is D. Thus if the difference between the num-
ber of columns of Axy, and the rank of Axy, is greater than D, it may
be reasonable to expect that the algorithm would not yield a univari-
ate polynomial following the reduction of Axy. There exist examples
where this difference always exceeds D, however large the parameter D
is chosen, and the XL algorithm fails to terminate for many of these ex-
amples. That such cxamples exist can be demonstrated using techniques
from Hilbert Theory [34].

The polynomial ring Flzy, ..., z,] is also a vector space over F (Ex-
ample 2.40), and we let Flzy,...,2,]s and Flz1, ..., 2,]<s denote the
subspaces generated by the monomials of degree s and the monomials
of degree at most s respectively. We can now define the homomorphism

veFley, ..., zn)<s — Flzo,@1,. .., Tols
f = zif i—;,...i—g

80 vs(f) is a homogencous polynomial of degree s in n + 1 variables.
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Suppose now that we have a quadratic equation system and that
{f1,..., fm} is the associated set of polynomials in Flxy,...,z,]. We
can define the ideal

T={(a(f1),. .., va(fm)) < Flzo,z1,..., 2.,

and we let I, =I1NTFzg,21,...,2Z,)s be the s-homogencous component
of I, that is the subsct of all homogencous polynomials of degree s in 1.
It is shown in [41] that if

x(D) = dimp(F[zo, z1, . .., 2] p) — dimp(Ip) < D,

then the Gaussian reduction of the matrix Axy, in the XL algorithm with
parameter D yields a non-trivial univariate polynomial. Following [41],
we define Dpyp the least positive integer D such that x(D) < D. If
there is no such D, then we say that D, = o0 and it is very likely that
for most such systems the XL algorithm does not terminate.

The function x(D) is called the Hilbert Function of T [34]. The idcal
T defines a projective variety W(T), of which the affine portion is defined
by the ideal I = (f1,..., fm) (Section 2.5). A well-known result from
Hilbert Theory states that for D large cnough, the Hilbert function x (D)
is a polynomial in D, called the Hilbert Polynomial, with degree equal
to the dimension of W(T) [34].

This result about the Hilbert polynomial has important consequences
for the XL, algorithm. If the projective variety W(T) has nonzero dimen-
sion, then x(D) is a non-constant integer polynomial for large enough
D. We would thus expect x(D) > D for large cnough D. In this casc,
the reduction of the matrix Axy, should not yicld a univariate polyno-
mial for most systems, and it is very likely that the XL algorithm docs
not terminate. However, in the equation systems that arisc in cryptol-
ogy, we arc usually interested in the unique solution to the cquation
system over a small field and can thercfore include the ficld equations
z — x; = 0. The associated projective varicty is then zero-dimensional,
that is dim(W(I)) = 0. This guarantees that there exists a value of D’
such that the Hilbert function is constant for all D > D', and the XL
algorithm should terminate in these cases of cryptographic interest.

Complexity of the XL algorithm

We consider the complexity of solving a gencric multivariate quadratic
equation system with m quadratic equations and n variables using the
XL algorithm. The XL algorithm attcmpts to solve this system by mul-
tiplying the m quadratic equations in the system by all monomials up
to a prescribed degree (D — 2), and then solving the resulting extended
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system of maximal degree D by linearisation. The number of monomials
in Fla1,...,z,] of degree at most D is ("5"). Thus the XL algorithm

generates an cxtended equation system with

(n+D—2

n+ D
D_9 > equations in about ( ; > distinct monomials.

If the equation system is over GF(2), then the field relations allow us to
identify xz? with z;. In this case, the (reduced) XL algorithm gencrates
an extended cquation system with

D-2 n) D,
m . | equations in about ( ) distinct monomials.

If the extended equation system contains N monomials, then the com-
plexity of the XL, algorithm is expected to be of the order of N ficld op-
crations, where w is the exponent of matrix reduction (Definition 2.53).

The key issuc in obtaining lower bounds for the complexity of the XL
algorithm is finding Dy, the minimal degree D such that x(D) < D.
For this value of D, the XL algorithm is expected to yield a univariate
polynomial. The value D is determined by the number of linearly inde-
pendent polynomials (over F) generated by cach interaction of the XL
algorithm. We note that it is very difficult to obtain accurate estimates
for Dypin [18, 19]. The original heuristic estimates from the XL proposal
are given in [28], where it was suggested that the algorithm had subex-
ponential complexity when m > n. However, these estimates proved to
be too optimistic. In fact, for m =n 4 ¢ (¢ > 1), we have

RIS n

min —. m + 1 9
with more precise lower bounds when ¢ > 3 [41]. Thus the complexity
of the XL algorithm does not seem to be subexponential in n.

A compact AES quadratic equation system over GF(2) has 8000 equa-
tions in 1600 variables, excluding field cquations (Section 5.2). For such
a system, the value Dy, = 18 is suggested in [31]. This estimate is
based on the original heuristic complexity estimates for the XL algo-
rithm given in [28] and would give a complexity of the order of 2330
field operations to solve the AES equation system. In fact, the results
of [41] show that Dy, > 44, which gives a complexity for solving the
AES equation system of at least the order of ( a4 (16.00)>w ~ 2081 ficld

1=0) g
operations [20]. Even though variants of the XL algorithm might reduce
this figurc to the order of 248 field operations [30], it scems that solv-
ing a generic quadratic cquation system of comparable size to an AES
equation system using the XL algorithm is infeasible.
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Comparison between the XL and Grébner basis algorithms

The XL algorithm was proposed specifically to solve systcms of multi-
variate equations arising in cryptology. Such systems typically have a
unique solution over a small finite field and are often overdefined. It was
intended that the XL algorithm would exploit these properties to find the
solution of such a system without having to compute the Grobner basis of
the associated ideal using some gencric Grébner basis algorithm. In fact
the authors of the XL algorithm cxpected that the algorithm would be
more cfficicnt than Grobner basis algorithms in these special cases [28].
However, there is now a much better understanding of the behaviour of
the XL algorithm than when first proposed [4, 17-19, 41]. In particular,
it has been shown that the XL algorithm is much more closely rclated
to Grobner basis algorithms than had been originally anticipated.

The relationship between the XL algorithm and Grébner basis algo-
rithms is considered in [4]. An analysis of a version of the XL algorithm
shows that the XL algorithm works in a similar manner to the F4 calcu-
lation of a Grébner basis of a polynomial ideal with the lez ordering. In
the case of an equation system over a finite ficld with a unique solution,
the XL algorithm computes the Grébner basis of the associated ideal of
the equation systcm and the field equations and it can be seen as a re-
dundant version of the F4 algorithm. For such an equation system over
GF(2), the degree D for the XL algorithm should be roughly the same
as the degree of the polynomials required by the F5 algorithm. While
the matrix used by the F5 algorithm is expected to be smaller than the
matrix used by the XL algorithm, for an equation system over GF(q)
with ¢ > n, it is unlikely that reductions by the field relations occur.
In such cascs, the degree D required by the XL algorithm is likely to be
higher than that required by the F5 algorithm using greviex ordering [4].

The results of [4] therefore seem to indicate that the XL algorithm
in its current form offers little benefit over efficient versions of generic
Grébner basis algorithms such as F4 and F5.

3.  Specialised Methods

The discussions of previous sections secm to indicate that there is lit-
tle hope that gencral techniques from computer algebra might be used
in a straightforward manner to solve the equation systems arising from
modern block ciphers. Howevor, equation systems arising from iterated
block ciphers can be viewed as iterated systems of cquations, with simi-
lar blocks of multivariate quadratic equations repeated for cvery round.
These blocks arc connected to each other by their input and output vari-
ables and by the key schedule. These cquation systems are highly sparsc.



110 ALGEBRAIC ASPECTS OF THE AES

Thus it might be more promising to apply some dedicated method, per-
haps built on known techniques from computer algebra, but aiming to
exploit the special propertics of a target system. We discuss some of
these proposals below.

The XSL Algorithm

The extended sparse linearisation or XSL algorithm was designed to
exploit the structure of equation systems arising from iterated block ci-
phers. The XSL algorithm was introduced in [31, 32], where its proposed
application to the AES cquation system attracted much attention.

The XSL algorithm is based on the XL algorithm (Scction 6.2). In the
XSL algorithm the equations arc multiplied only by “carefully selected
monomials”, whereas the cquations are multiplied by all monomials up
to a certain degree in the XL algorithm. This is the core idea in the XSL
algorithm and is intended to generate a large number of equations whosc
terms are the product of selected monomials. The goal is therefore to
create fewer new monomials while generating many new equations in the
extended equation system. The XSL algorithm also incorporates an ad-
ditional last step called the 77 method, in which new linearly independent
equations arc gencrated without creating any new monomials.

Different versions of the XSL algorithm have been published. The first
version was proposed in [31], where two different attacks on the AES
based on the XSL algorithm are described. The first version requires a
few plaintext—ciphertext pairs in order to eliminate the key variables and
key schedule equations as a preliminary step. The second version should
require only a singlc plaintext ciphertext pair and uses the key schedule
equations. The compact XSL algorithm is a slightly diffcrent version of
the algorithm and was introduced later [32]. A heuristic description of
the steps in an XSL-type algorithm is given in Figure 6.7

The basic idca behind the XSL algorithm is to expand the original
system by multiplying equations only by the product of monomials that
already exist in the original equation system. For a sparse cquation
system, this potentially decrcases the number of monomials generated
in the extended cquation system when compared to the extended system
generated by the XL algorithm. Furthermore, as the XSL algorithm is
based on the linearisation method, the algorithm should benefit from
overdefined systems.

The XSL algorithm was intended to exploit the structure of some
types of block cipher. In its basic version, the XSL algorithm assumes
that the block cipher is built with layers of small S-Boxes interconnected
by a key-dependent affine transformation. It is further assumed that the
S-box can be described by an overdefined set of quadratic equations. For
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Input: System of block cipher polynomial equations fi = ... = fi, = 0.
Output: Solution (ai,...,an) where fi(a1,...,a,) =...= f(a1,...,an) = 0.

el

Choose certain sets of monomials and equations which are to be used during the

later steps of the algorithm by analysing the original equation set.

5: Select the value of the parameter P and multiply the chosen equations by the
product of P — 1 selected monomials.

6: Perform the T method in which some selected equations are multiplied by single
variables.

7: Tterate T’ with as many variables as necessary until the extended system has

enough linearly independent equations to apply linearisation.

9: Return Solution of the extended system obtained by linearisation

Figure 6.7. Heuristic description of an XSL-type algorithm.

example, the AES and the block cipher SERPENT [9] both use S-boxes
that give rise to an overdefined systems of quadratic equations. The
equation systems for such block ciphers are sparse and XSL is supposcd
to take advantage of this when cxpanding the system prior to linearisa-
tion. For versions of the XSL algorithm that use key schedule cquations,
the key schedule should have a similar structure to the state encryption
transformation. This is the casc for the AES.

XSL analysis

The XSL algorithm could be considered a general method for solving
certain structured but sparse systems of quadratic cquations. Howcver,
it was the proposal to apply XSL to the equation system of the AES
that attracted much attention.

Estimates for the complexity of the XSL algorithm are given in [32]
and refer to an analysis without the key schedule. These estimates give
a complexity of the order of 2298 ficld opcrations to solve the equation
system arising from the AES with 256-bit keys. It was also claimed that
much better results could be obtained when applying the complexity
estimatcs to equation systems including the key schedule, especially if
the BES-style cquation system for the AES is used (Section 5.3). In
such a case, the complexity estimates for solving an cquation system
over GF(28) for the AES with 128-bit keys suggested that around 21%
ficld operations would be required, which is roughly equivalent to 2109
AES cncryptions. This implied that if the XSL algorithm complexity
estimates of [32] were correct, then AES key recovery might have been
possible with a lower work cffort than exhaustive key search [89, 90].



112 ALGEBRAIC ASPECTS OF THE AES

However, the heuristic estimates for the complexity of the XSL algo-
rithm in [32] arc too optimistic and overestimate the number of lincarly
independent equations generated by the algorithm. This is shown by the
application of the XSL complexity estimates to the BES-style equations
for the AES given by [90]. There it is demonstrated that such estimatcs
would give significantly morc lincarly independent equations than terms,
even though this is clearly impossible.

The heuristic XSL complexity estimates of [32] overestimate the num-
ber of lincarly independent equations for two reasons. Firstly, it is as-
sumed that all equations generated by the method are linearly indepen-
dent. This is clearly not the case. For example, if f; and f; arc two
polynomials in the initial quadratic system defined as

fi = Z chO‘ and f; = Z céXﬁ,

a€EN! BeN
then even for P = 2 we have the relation

firlfid= D" X fi=> X% fi=f;-[f).

aEN/ ﬁGNJ’.

There arc many relations of this type. Secondly, the XSL algorithm
states that neighbouring S-Boxces need to be excluded when multiplying
the linear equations, but this is not taken into account in the estimates.
Revised estimates for the XSL complexity are given in [20].

Whilst doubts were very quickly cast on the general idea of the XSL
algorithm, until recently very little was known about its detailed be-
haviour. There are a number of rcasons for this. Firstly, the XSL al-
gorithm as proposed in [31, 32| relies on the system having a special
form, and this makes it harder to give a precise mathematical analysis
of the algorithm. Secondly, different versions of the XSL algorithm were
published, and in all cases the description left room for interpretation.
Furthermore, given the size of the systems involved, it is very difficult
to implement and run experiments cven on small examples to examine
the heuristic arguments of [31, 32].

A detailed analysis of the XSL algorithm is presented in [20], including
a simulation on a small variant of the AES. It is shown that the XSL
algorithm of [32] cannot solve the equation system arising from the AES.
The problem arises from the way the original cquations arc processed
prior to multiplication and the sclection of monomials. An alternative
to the XSL algorithm is also discussed, but gencrally it appcars unlikely
that analytical techniques of this type would be successful [20].
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plaintext ciphertext
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ko XOR
1

ki —~ ROUND 1 ROUND 10 [ k1g
1 1

ky ~| ROUND 2 ROUND 9 r ko
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ks — ROUND 3 ROUND 8 | kg
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ky — ROUND 4 ROUND 7 [ k7
{ 1

ks —+ ROUND 5 ROUND 6 ke
1 1

«—— equate variables —

Figure 6.8. An illustration of the meet—in—the-middle technique for the AES.

Meet—in-the—middle techniques

The iterative nature of block ciphers means that the associated equa-
tion systems arc typically structured in blocks. For example, the equa-
tion system for the AES consists of ten similar blocks of multivariate
quadratic equations, cach block containing the equations for one round.
Variables in onc block only occur in neighbouring blocks or within the
relevant part of the key schedule.

A promising technique to find the overall solution for such cquation
systems is to employ a meet-in-the-middle approach. We divide the
equation system for r rounds into two subsystems for 5 rounds, where
we assumc without loss of generality that r is even. We regard the
output variables of the first cquation subsystem as the input variables of
the second equation subsystem. We can then make use of Theorem 6.5 to
simplify the problem. Theorem 6.5 gives a method for obtaining all the
relations between variables in a subset S’ of the set of variables S. We
first compute the Grobner basis G with respect to the lez ordering of the
ideal generated by the set of polynomials associated with the cquation
system. We then extract thosc polynomials in the Grébner basis G which
involve only those variables in the subsct S’. This technique essentially
eliminates all variables in the set S\ S’
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Number of | Number of | Number of | Time in

variables equations | monomials seconds

SR(10,1,1,4) five rounds — 88 172 217 19.22
SR(10,1,1,4) five rounds «— 76 148 189 22.41
Solution 16 40 52 0.02

Total 41.65

SR(4,1,1,8) two rounds — 80 152 193 15466.37
SR(4,1,1,8) two rounds « 56 104 137 4603.89
Solution 32 80 576 215.92

Total 20286.18

SR(4,2,1,4) two rounds — 80 152 193 667.17
SR(4,2,1,4) two rounds — 56 104 137 2722.43
Solution 80 176 524 14.87
Total 3404.47

Figure 6.9. Experimental results on the meet-in-the-middle approach when using
F4 with the lex ordering.

For the AES cquation system with r rounds, we compute the Grobner
bases of the two cquation subsystems with respect to the lex ordering.
We then eliminate variables that do not appear in rounds § and § + 1.
This gives two small systems of cquations in variables from the two
systems that are simply reclated by the round keys. These two cquation
systems can then be combined with some additional cquations from the
key schedule and solved to obtain the key (Figure 6.8).

Experimental results using this approach on AES variants arc given
in [22] and presented in Figurc 6.9. These results seem to confirm that
a meet—in—the -middle technique may be more efficient than solving the
full AES equation system directly. For example, the cquation system for
the small scale AES variant SR(10,1,1,4) (Section 3.3) can be solved
with the meet—in—-the-middle approach in 42 seconds, whereas the direct
approach took 340 scconds (Figure 6.4). Better results were also ob-
tained for SR(4,1,1,8) and SR(4,2,1,4) using the meet-in-the-middle
approach.

The meet—in—the- middle approach is cryptographically intuitive and
can be considered within the context of time-memory trade-off attacks.
In a chosen-plaintext attack, the first subsystem of cquations docs not
change and solving this equation subsystem can be considered precom-
putation. Although the cxact complexity and storage requirements for
this precomputation phase arc not clear, such precomputation would
clearly reduce the time complexity of the onlinc attack.

Onc possible drawback to this approach is that computations using
elimination orderings such as lex arc often less cfficient than those with
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Number of | Number of | Number of | Time in

variables equations | monomials | seconds

SR(4,2,1,4) two rounds — 112 216 273 553.63
SR(4,2,1,4) two rounds «— 104 200 257 1501.41
Solution 136 1197 918 12.68

Total 2067.72

Figure 6.10. Experimental results on the meet-in-the-middle approach when using
F4 with the grevlex ordering.

degree orderings such as grevlez. Thus we might expect that using the lex
ordering in the two subsystems would give only limited advantages over
using the grevier ordering for the full system. An alternative approach
would be to simply compute the Grébner bases for the two subsystems
using the most efficient ordering and then to combine both results to
compute the solution of the full set equations. Some cxperimental results
on this approach from [22] are given in Figure 6.10. These indicate that
this approach was more efficient for the small scalc variant SR(4,2,1,4),
though more expensive for the small scale variant SR(10,1,1,4).

In general, however, the experimental results of [22] suggest the appli-
cability of a more general divide--and—conguer approach to the problem
of solving the equation system deriving from the AES. In such an ap-
proach, some form of (perhaps largely symbolic) pre-computation could
take place. This could then be used to produce the solution to the full
equation systcm.



Chapter 7

CLOSING REMARKS

In this monograph we have provided a summary of topics in the al-
gebraic analysis of the AES. While appealing to algebraic techniques in
cryptanalysis is not new, the range of algebraic techniques that might
be used in an analysis of the AES is unprecedented. No other major
block cipher offers quite the same opportunitics. The AES has a round
function that can be described in a particularly succinct fashion and the
cntire encryption process can be represented by a compact and simple
system of equations.

The designers of the AES were carcful to ensure that traditional tech-
niques would not be useful in any cryptanalysis. Thus techniques from
arcas of mathematics and computer science not ordinarily considered in
cryptology may be necded for any substantive cryptanalysis of the AES.
The most dircct method of cryptanalysis would be to recover an AES
key by solving an equation system. However, it is unlikely that any gen-
eral purpose method for doing this would be successful against the AES.
Instead, it is almost certain that techniques tailored to the AES would
be required.

We anticipate that a greater understanding of the algebraic properties
of the AES will be developed in the coming years. However, there are
currently no techniques, algebraic or otherwise, that compromise the
sccurity of the AES.



Appendix A
Inversion Equations over GF(2)

We assume the bit ordering (w7, ..., U)(])T for bytes in the AES. The matrices Ty
and S, corresponding respectively to multiplying by # and squaring in F, are given in

Example 2.65. As described in Section 5.2, for w,z # 0 we have
Cwz = (0,0,0,0,0,0,0,1)"
where Cy,x is given by

wrT7 + WrTs + Wrlq + WrTo + WeTe + WeTs + WeT1 + WsT7
+wsTe + WsTe + WeT7 + WaT3 + W3T4 + Waks + wWi1ke -+ WoT7

WrTe + W7T4 + WrT3 + WeT7 + WeTs -+ WeTa + WeTo + WsTo + WsTs
+WsT1 1 Wal7 + Wake + Wak2 + Waky + Wak3 + Walks + W15 + WolTs

Wrxs + Wrx3 -+ Wik + Wexe + WeZq + WeZ3
+wsTy + wWsTs + Wska + WsLo + Weks + Waks + wWalks
+w3T7 + Wake + Waly + Waly + W2l3 + Wile + WolTs

wrxr + wrrs + Wrky + wWrk + WeTs + weTs + weT2
FWsLe + WsLg + W5T3 + Wak7 + Wals + Wals + Wako + W3Te
FwW3ks + Wak1 + W27 + Welle + Wely + W1T7 + W1T3 + Wol4

W7 + Wrke + WrLs -+ WrLq + WLz + W71 + WeL7 + WeTe

+wWeTs + WeTa + Wex2 + W57 + Wske + W5T5 + W53 + WaT7 + WaTs
+waTa + Wak7 + Waxs + W3ko + Wake + W21 + W1x7 + W12 + WoZ3

WrTe + WrL3 + Wrk2 + WeL7 + Wexa + Wex3 + WsTs + W5T4
+wake + waxs + waxy + wake + weky + wexo + wixy + woks

wrT7 + WrLs + Wrke + W71 + WeTos + Wex3 + W2
FwsT7 + WsTa + WsT3 + Wals + Waka + W3Ts
+w3Ts + weky + walke + WiLy + wWike + wWol1

wrTe + wWrTs + w71 + WeT7 + Wele + WeT2
+wsT7 + Ws3 + Walka + W3Ls + Walks + W1y + Woko

The above matrix equation gives seven multivariate quadratic equations over GF(2)

for AES inversion. A further equation is given with high probability.
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As also described in Section 5.2, we have
(CwS+DNx=0
where the vector (Co, S + I}z is given by

WrXe + wWrLs + Wrre + wrko + wexy + Wexa + weZsz + WsT7r + WsTg
+wWsx3 + WsT1 + Wals + Waly + W37 + waks + Wik + Wals + Walks
+w12s + wiTs + Woky + Woks + T7

WL + Wrk3 + Wrla + WeTe + WeTs + Wel2 + WeZo + WsL7 + WsTy
Fws T3 + WaL7 + Wakg + WaT3 + Wek1 + W3y + W3Ta + W2k7 + W2k
+wek2 + W1k + Wi1ks + Woks + Wwoks + Tp

W7T7 -+ WrTs + WrTa -+ WrT1 + WeTo - WeT3 + WeT2 + WsTo + WsTs
+wsTy + WsTo + Waly + Walyq + Wak3 + W3y + W3Te + W3L3 + W3y
+Wos + Wakq + W1L7 + Wikq + W1T2 + Woke + WolLs + Ts
w7T7 + W7Ts + WrT2 + Wrk1 + Wek7 + Weks + Weka + Wex1 + WsLo
+wsx3 + WsTz + Wale + WeTs + wWaLe + WaTo + w37 + W3y + w33
twaX7 + wake + w2y + w2y + W15 + W1Ta + Wok7 + Wokg + WoT2
+24
WrL5 + Wrks + Wy T3 + Wrk2 + WeTs + Wels + WeZ3 + WeT2 + We1
+WsTe + WsTs + WsLa + WsL3 + Walke + WaLs + Waly + WaT3 + WaT2
+wsxr + w3ke + W3Ts + W3Ta + W3To + W27 + Wake + W2ks + Walq
+wak3 + w1y + W1Te + W1Ts5 + W11 + WoT7 + WoeTg + WoTs + Woka
+$3
wrLy + wrxe + wrTs + wrZs + WrTs + wrry + Wey + WeTs + Wz
+wsx7 + wsTe + wsTs + wsTa + wsT2 + wae + waks + waxr + wake
Fw3xs + w3x3 + wek7 + Wela + Wako + Wr1T7 + W16 + W14 + WoTs
+woZt + T2
wrxe + Wrks + w7y + WeT7 + WeTe + Wels + WeTa + W63 + WeZ1
‘wsx7 + wsxs + Wz + Wak7 + Wale + Waks + WaTa + Waka + W3ks
+TW3T3 + Weky + Wale + Weks + Welz + W17 + W14 + W10 + Wol7
+woxs + woxa + X1
wrkr + wrky + WLy + wWekr + WeTe + WeZs + W1 + Wsks + WsZa
FwWax7 + WaTa + WaT2 + wW3Te + W3Ts + WeTs + WXz + Wi1L7 + Wilke
+woxs + woke + woko + Xo

This gives eight more multivariate quadratic equations over GF(2) for AES inversion.
We also have
(CeS+Dw=0

where (Cz S+ I)x is given by the above vector with w and x interchanged. This gives
eight further multivariate quadratic equations over GF(2) for AES inversion. )



Appendix B
Augmented Linear Diffusion Matrices

The augmented linear diffusion matrix M with respect to the standard basis is
given on the next two pages. We use . to represent O in this matrix, and the 128-
bit inputs to the augmented linear diffusion layer are viewed as column vectors. We
note that M is a block matrix built from three different nonzero submatrices, which
correspond to the transformations consisting of the GF(2)-linear map followed by
multiplication by 1, 8 or 8 + 1 (01,02, 03 in hexadecimal) respectively.

We then give the augmented linear diffusion matrix P~*M P, where the matrix P
is given in [88]. This is just the augmented linear diffusion matrix M with respect
to a different basis. We again use . to represent 0 in this matrix, which acts on
column vectors. The matrix P~*MP is a block diagonal matrix, and line breaks in
the presentation of this matrix represent the division into fifteen invariant subspaces.
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Augmented linear diffusion matrix M
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Augmented linear diffusion matrix P"1MP
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Appendix C
Equation System for SR(2,2,2,4) over GF(2%)

We illustrate the style of the equation system over GF(28) for the AES by giving
the equation system over GF(2*) for the small scale variant SR(2,2,2,4) of the AES
(Section 3.3 and [22]). These are BES-style equations for which we assume that
O-inversions do not occur.

Component j and conjugate [ for the plaintext, ciphertext and the key (also used
as the initial round key) are denoted by pji, ¢;i and ko respectively. We regard the
two rounds as round one and round two. We denote the input and output of the
inversion and the subkey used in round ¢ for component 7 and conjugate ! by wij,,
zij1 and kqji respectively.

[ [ GF(2%) Variable | Round i | Component j | Conjugate | |
Input/Output
Plaintext D 0,1,2,3 0,1,2,3
Ciphertext cji 0,1,2,3 0,1,2,3
State
Inversion input Wij1 1,2 0,1,2,3 0,1,2,3
Inversion output Tijl 1,2 0,1,2,3 0,1,2,3
Key
Subkey kit 0,1,2 0,1,2,3 0,1,2,3
Dummy Sij1 0,1 0,1,2,3 0,1,2,3
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Initial Subkey Relations

w100 + Poo + Kooo
w101 + po1 + koot
wio2 + pPoz + kooz
w103 + Pos + Kooz

witoe + P1o + Koo
wit1 + pu1 + ko1t
w12 + P12 + ko12
w113 + p13 + ko3

w120 + P20 + ko2o
wiz1 + P21 + ko21
w122 + pa2 + ko2
w123 + P23 + ko2a

ALGEBRAIC ASPECTS OF THE AES

w130 + P3o + Koso
w1s1 + pa1 + Kozl
w132 + P32 + ko3
w133 + P33 -+ kosa

Inversion and Conjugacy Relations: Rounds 1 and 2

w%oo + T101
37%00 + 2201
zio1 + T102
2301 + T202
I;{oz + Z103
x302 + 203
zi03 + T100
I%og -+ X200
i + Z111
T30 + T211
I%u + X112
@311 + @212
12%12 + Z113
33312 + T213
2315 4 Z110
I%m -+ Za210
2320 + 121
T420 + 221
2791 + T122
x%21 + Zo22
2o + T123
w%gz + T223
Tiag + T120
z303 + T220
33?30 + T131
@350 + Tam
233 + 132
x331 + T2az
55%32 + X133
Z‘%;;z + X233
a:fgg + x130
113%33 + Z230

wio0T100 + 1
wao0T200 + 1
wiptT1o1 + 1
wao1 %201 + 1
wio2Z102 + 1
wag2T202 + 1
wi03T103 + 1
w203T203 + 1
w110%110 + 1
wa10%210 + 1
wi11Z111 + 1
wa11Te11 + 1
wiizZ2 + 1
wa12®212 + 1
wi13T113 + 1
wa13T213 + 1
wiz20T120 + 1
wa20T220 + 1
wi21T121 + 1
wa21Z221 + 1
wi22T122 + 1
wa22T222 + 1
wi23T123 + 1
W23 a2z + 1
w130Z130 + 1
we30T230 + 1
w131%131 + 1
wa31T23t + 1
w132x132 + 1
wa3z2Tez2 + 1
w13sT133 + 1
Wa33Tae3z + 1

w%oo + wio1
w%oo + waot
w%m + wio2
w1 -+ w202
w%(]z + wio3
w%m + w203
Wig3 + Wioo
w%og + wao0
w%m + wiit
whio + wai1
Wiy +wii2
wiiy + waie
wiig +wis
w%n + w213
w%m 4+ w110
w%m + wa1io0
Wigg + Wi21
Whao + waz1
Wiyt + wizz
Wag1 + wazz
’W%zz + w123
w%QQ + wa23
w%zg + wi20
w%ga + wa20
U)%;;o + w31
U)gso + wa31
w%gl + w132
w3z + was2
w%sg + w133
w%ag + waas
w%as + w130
w§33 + wa3so
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Diffusion Relations: Round 1

waoo + Fri00 + 3101 + 72102 + FZ103 + Awi30 + 22131 + Bx132 + Az133 + koo + 6
wao1 + AZ100 + Az101 + 52102 + 6x103 + 82130 + 8x131 + 4z132 + 9133 + kot + 7
wzo2 + 7T100 + 8101 + 8% 102 + 22103 + Dx130 + Cr131 + Cx132 + 3%133 + K102 + 6
w203 + 4T100 + 62101 + Cxr02 + C103 + 5130 + Ex131 + Frazz + Frizs + kioz + 7
wz1o + AZ100 + 2x101 + Brioz + Azios + Frizo + 32131 + 72132 + F2133 + k110 + 6
war1 + 8T100 + 8x101 + 4102 + 9103 + AT130 + AT131 + Bxi32 + 6x133 + ki + 7
wa12 + Dx10g + C101 + Cx102 + 32103 + 7130 + 82131 + 8Z132 + 20133 + k112 + 6
was + 5x100 + Ex101 + Fo102 + Fx103 + 4130 + 62131 + Cxise -+ Crizs + ks + 7
wWezo + AT110 + 22111 + Bx112 + A%113 + Frizo + 3®121 + 72122 + Fora3 + K120 + 6
waz1 + 8T110 + 8111 + 42112 + 92113 + Aw120 + ATi21 + BT122 + 6123 + K21 + 7
wa22 + Dx110 + Cr111 + Cx112 + 3w113 + 72120 + 8%121 + 8wi22 + 2w 123 + K122 + 6
Wa23 + 5T110 + ET111 + Fri2 + Foiis + 4120 + 62121 + Cx1ge + Caog + Kyos + 7
w230 + Fr110 + 3z111 + 72112 + Forna + Azi20 + 2x121 + Brios + Az123 + K130 + 6
wo31 + AT110 + AT111 + 52112 + 62113 + 8120 + 8T121 + 4¥122 + 9123 + K131 + 7
w23z + TT110 + 8111 + 8%112 + 22113 + Dx120 + Ciz1 + Cxio2 + 3123 + k132 + 6
w233 + 4T110 + 6111 + Cx112 + Cx113 + Bxi20 + Exi21 + Fx122 + Fries + kias + 7

Diffusion Relations: Round 2

coo + Fraoo + 3201 + Tx202 + Froos + Ax23o + 21231 + Bxasa + Azass + kago + 6
co1 + Aw200 + Az201 + 52202 + 6%203 + 8230 + 8231 + 4xasz + 9w233 + ko1 + 7
coz + 7x200 + 8201 + 82202 + 2%203 + D230 + Cx231 + Crase + 3233 4 k202 + 6
co3 + 42200 + 62201 + Cx202 + Cx203 + 5230 + Exa31 + Frage + Fxazs + koos + 7
c1o + Az200 + 22201 + Bwaoz + Aoz + Foasg + 3231 + @232 + Fross + koo + 6
c11 + 8%200 + 8x201 + 4202 + 9203 + Ax230 + AZaz1 + Bxase + 6wz + ko1 + 7
c12 + Dxaoo + Cx201 + Cx202 + 3203 + 7230 + 823t + 8x232 + 2wa33 + ko12 + 6
c13 + 5200 + Ex201 + Fz202 + Foos 4 4230 + 62231 4 Crosz + Crass + kaiz + 7
c20 + Awa10 + 22211 + B2212 + Ax213 4 Frazo + 3%221 + 7oz + Fro2s + k2o 46
co1 + 8x210 + 8x211 + 42212 + 9%213 + AZogo + A1 + Bxogs + 6xa2s + kool + 7
c22 -+ Dx210 + Czo11 + C2212 + 3%213 + T2 + 8T221 + 8202 + 2T203 + k22 + 6
c23 + 5w210 + Exo11 + Fo212 + Fx213 4 4220 + 62221 + Coae + Crazs + kaos + 7
c3o + Fxa10 + 3x211 + Twor2 + Froisz + Azogo + 22221 + Bxoon + Awoos + kazo + 6
c31 + AT210 + Ama11 + 5212 + 62213 + 8220 + 8Z221 + 4%222 + 9223 + k2a1 + 7
ca2 + 7T210 + 8211 + 8T212 + 22213 + DZ22o + Cxa21 + Cxazz + 3223 + Kaz2 + 6
¢33 + 4x210 + 6211 + Cx212 + CT213 + 5T220 + EZa01 + Foo + Fraoz + Koaz + 7
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Key Schedule Conjugacy Relations

kdoo + koot Koo + k101 k250 + koo
ko + Kooz Ko + kioz ko1 + kao2
3oz + koos Koz + ko3 k3o + kaos
k303 + kooo ko3 + koo k205 + k200
k310 + ko ki + ki k10 + kon
kdy1 + Kotz ki1 + ke k311 + ko212
k312 + ko1a k312 + k113 K312 + k213
kb3 + koto ki1s + k110 k313 + ka1o
k&0 + koot kfzo -+ k1a1 K3o0 + koot
ka1 + koza kP31 4 kio2 k251 + kaoz
k2 + koas k295 + k13 K2y + kons
kB3 + ko2o k233 4 k120 k325 + koso
kB0 + kos1 K230 + ks k330 + ka3
ka1 + kosz kisy + k12 k331 + ka2
kf32 + koss ki + k133 ks + kazs
Kbz + koo kfas + kiso k333 + kaso

Key Schedule Inversion and Conjugacy Relations

kososooo + 1 S300 4 001 k13os100 + 1 5200 + S101
koz1s001 + 1 8501 + So02 ki31s101 + 1 $jo1 + s102
ko325002 + 1 $B02 + So03 k1328102 + 1 5202 + S108
ko33so03 + 1 5303 + $000 k133s103 + 1 8303 + S100
koz05010 + 1 %10 + s011 k1208110 + 1 Stio + s111
koz18011 + 1 s&11 + so12 kia1si1n + 1 st + s112
koz22s012 + 1 st + s013 k1228112 + 1 stz + s113
ko23so1z + 1 8813 + so10 kozssiiz + 1 st1s + s110

Key Schedule Diffusion Relations: Round 1

k100 + kooo +5s000 + 18001 + Csoo2 + 55003 + 7
k101 + koot +28000 + 25001 + 18002 + Fsoos + 6
k102 + Kooz +As000 + 48001 + 45002 + 1s003 + 7
k103 + koos +1s000 + 88001 + 35002 + 35003 + 6
k110 + koto +58010 + 15011 + Cso12 + 55013
k111 + kon1 +23010 + 28011 + 18012 + Fso13
k112 + ko1z2 +As010 + 43011 + 4S012 + 15013
k113 -+ ko3 +18010 + 83011 + 3Sp12 + 35013

k120 + ko2o0 + kooo  +58000 + 18001 + Cs002 + 58003 + 7
k121 + ko21 + koot +28000 + 28001 + 18002 + Fsoos + 6
k122 + kozz + Kooz  +ASsooo + 4So01 + 45002 + 18003 + 7
k123 + ko2s + koos  +1s000 + 85001 + 3002 + 35003 + 6
k130 + koso + koto  +5S010 + 15011 + Cso12 + 58013
k131 + koz1 + koir  +2s010 + 28011 + 1s012 + Fso13
kiz2 + kos2 + ko12  +Asoio + 45011 + 4S012 + 1s013
k133 + kozz + kowz  +1S010 + 83011 + 3s012 + 3s013
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Key Schedule Diffusion Relations: Round 2

k200 + k100
kao1 + kio1
k202 + k102
k203 + k103
ka1o + k110
ko1 + k111
ka12 + k112
koiz + k113
ka2o + k120 + k1oo
koo1 + k121 + k101
kazz + K12z + k102
kazs + k123 + k103
kaso + kiso + k110
ka31 + k131 + k111
k232 + k132 + k112
k233 + k133 + k1is

+5s100 + 15101 + Cs102 + 55103 + 4
+28100 + 28101 + 18102 + FS103 + 3
+As100 + 48101 + 48102 + 18103 + 5
+1s100 + 85101 + 38102 + 35103 + 2
+58110 + 18111 + Cs112 + 58113
+25110 + 25111 + 18112 + Fs113
+As110 + 48111 + 45112 + 18113
+18110 + 88111 + 35112 + 38113
+55100 + 18101 + Cs102 -+ 58103 + 4
+25100 + 28101 + 18102 + Fs103 + 3
+As100 + 48101 + 45102 + 18103 + 5
+15100 + 88101 + 35102 + 38103 + 2
+58110 + 18111 + Cs112 + 58113
+2s110 + 28111 + 18112 + Fs113
+Asi110 + 45111 + 45112 + 18113
+1s110 + 85111 + 38112 + 35113
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